1
|
Böcker M, Chatziioannou E, Niessner H, Hirn C, Busch C, Ikenberg K, Kalbacher H, Handgretinger R, Sinnberg T. Ecto-NOX Disulfide-Thiol Exchanger 2 (ENOX2/tNOX) Is a Potential Prognostic Marker in Primary Malignant Melanoma and May Serve as a Therapeutic Target. Int J Mol Sci 2024; 25:11853. [PMID: 39519404 PMCID: PMC11545956 DOI: 10.3390/ijms252111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
With an increasing incidence of malignant melanoma, new prognostic biomarkers for clinical decision making have become more important. In this study, we evaluated the role of ecto-NOX disulfide-thiol exchanger 2 (ENOX2/tNOX), a cancer- and growth-associated protein, in the prognosis and therapy of primary malignant melanoma. We conducted a tissue microarray analysis of immunohistochemical ENOX2 protein expression and The Cancer Genome Atlas (TCGA) ENOX2 RNA expression analysis, as well as viability assays and Western blots of melanoma cell lines treated with the ENOX2 inhibitor phenoxodiol (PXD) and BRAF inhibitor (BRAFi) vemurafenib. We discovered that high ENOX2 expression is associated with decreased overall (OS), disease-specific (DSS) and metastasis-free survival (MFS) in primary melanoma (PM) and a reduction in electronic tumor-infiltrating lymphocytes (eTILs). A gradual rise in ENOX2 expression was found with an increase in malignant potential from benign nevi (BNs) via PMs to melanoma metastases (MMs), as well as with an increasing tumor thickness and stage. These results highlight the important role of ENOX2 in cancer growth, progression and metastasis. The ENOX2 expression was not limited to malignant cell lines but could also be found in keratinocytes, fibroblasts and melanocytes. The viability of melanoma cell lines could be inhibited by PXD. A reduced induction of phospho-AKT under PXD could prevent the development of acquired BRAFi resistance. In conclusion, ENOX2 may serve as a potential prognostic marker and therapeutic target in malignant melanoma.
Collapse
Affiliation(s)
- Matti Böcker
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
- Department of Urology and Pediatric Urology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Eftychia Chatziioannou
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
| | - Constanze Hirn
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
| | - Christian Busch
- Dermatologie zum Delfin, Stadthausstraße 12, 8400 Winterthur, Switzerland;
| | - Kristian Ikenberg
- Institute of Clinical Pathology, University Hospital Zuerich, Schmelzbergstraße 12, 8091 Zuerich, Switzerland;
| | - Hubert Kalbacher
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Elfriede-Aulhorn-Straße 8, 72076 Tuebingen, Germany;
| | - Rupert Handgretinger
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany;
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Cerasuolo A, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol 2020; 8:474. [PMID: 32596243 PMCID: PMC7303290 DOI: 10.3389/fcell.2020.00474] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The spliceosomal complex components, together with the heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins, regulate the process of constitutive and alternative splicing, the latter leading to the production of mRNA isoforms coding multiple proteins from a single pre-mRNA molecule. The expression of splicing factors is frequently deregulated in different cancer types causing the generation of oncogenic proteins involved in cancer hallmarks. Cervical cancer is caused by persistent infection with oncogenic human papillomaviruses (HPVs) and constitutive expression of viral oncogenes. The aberrant activity of hnRNPs and SR proteins in cervical neoplasia has been shown to trigger the production of oncoproteins through the processing of pre-mRNA transcripts either derived from human genes or HPV genomes. Indeed, hnRNP and SR splicing factors have been shown to regulate the production of viral oncoprotein isoforms necessary for the completion of viral life cycle and for cell transformation. Target-therapy strategies against hnRNPs and SR proteins, causing simultaneous reduction of oncogenic factors and inhibition of HPV replication, are under development. In this review, we describe the current knowledge of the functional link between RNA splicing factors and deregulated cellular as well as viral RNA maturation in cervical cancer and the opportunity of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumouri IRCCS–Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
3
|
ECD promotes gastric cancer metastasis by blocking E3 ligase ZFP91-mediated hnRNP F ubiquitination and degradation. Cell Death Dis 2018; 9:479. [PMID: 29706618 PMCID: PMC5924763 DOI: 10.1038/s41419-018-0525-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
Abstract
The human ortholog of the Drosophila ecdysoneless gene (ECD) is required for embryonic development and cell-cycle progression; however, its role in cancer progression and metastasis remains unclear. Here, we found that ECD is frequently overexpressed in gastric cancer (GC), especially in metastatic GC, and is correlated with poor clinical outcomes in GC patients. Silencing ECD inhibited GC migration and invasion in vitro and metastasis in vivo, while ECD overexpression promoted GC migration and invasion. ECD promoted GC invasion and metastasis by protecting hnRNP F from ubiquitination and degradation. We identified ZFP91 as the E3 ubiquitin ligase that is responsible for hnRNP F ubiquitination at Lys 185 and proteasomal degradation. ECD competitively bound to hnRNP F via the N-terminal STG1 domain (13-383aa), preventing hnRNP F from interacting with ZFP91, thus preventing ZFP91-mediated hnRNP F ubiquitination and proteasomal degradation. Collectively, our findings indicate that ECD promotes cancer invasion and metastasis by preventing E3 ligase ZFP91-mediated hnRNP F ubiquitination and degradation, suggesting that ECD may be a marker for poor prognosis and a potential therapeutic target for GC patients.
Collapse
|
4
|
Alternative Splicing as a Target for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19020545. [PMID: 29439487 PMCID: PMC5855767 DOI: 10.3390/ijms19020545] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing is a key mechanism determinant for gene expression in metazoan. During alternative splicing, non-coding sequences are removed to generate different mature messenger RNAs due to a combination of sequence elements and cellular factors that contribute to splicing regulation. A different combination of splicing sites, exonic or intronic sequences, mutually exclusive exons or retained introns could be selected during alternative splicing to generate different mature mRNAs that could in turn produce distinct protein products. Alternative splicing is the main source of protein diversity responsible for 90% of human gene expression, and it has recently become a hallmark for cancer with a full potential as a prognostic and therapeutic tool. Currently, more than 15,000 alternative splicing events have been associated to different aspects of cancer biology, including cell proliferation and invasion, apoptosis resistance and susceptibility to different chemotherapeutic drugs. Here, we present well established and newly discovered splicing events that occur in different cancer-related genes, their modification by several approaches and the current status of key tools developed to target alternative splicing with diagnostic and therapeutic purposes.
Collapse
|
5
|
Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms. PLoS One 2014; 9:e108625. [PMID: 25299183 PMCID: PMC4191969 DOI: 10.1371/journal.pone.0108625] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are most commonly designed to reduce targeted RNA via RNase H1-dependent degradation. In this paper we demonstrate that cellular proteins can compete for sites targeted by RNase H1-dependent ASOs. We further show that some ASOs designed to mediate RNase H1 cleavage can, in certain instances, promote target reduction both by RNase H1-mediated cleavage and by steric inhibition of binding of splicing factors at a site required for efficient processing of the pre-mRNA. In the latter case, RNase H cleavage was prevented by binding of a second protein, HSPA8, to the ASO/pre-mRNA heteroduplex. In addition, using a precisely controlled minigene system, we directly demonstrated that activity of ASOs targeting sites in introns is strongly influenced by splicing efficiency.
Collapse
|