1
|
Gielecińska A, Kciuk M, Kołat D, Kruczkowska W, Kontek R. Polymorphisms of DNA Repair Genes in Thyroid Cancer. Int J Mol Sci 2024; 25:5995. [PMID: 38892180 PMCID: PMC11172789 DOI: 10.3390/ijms25115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The incidence of thyroid cancer, one of the most common forms of endocrine cancer, is increasing rapidly worldwide in developed and developing countries. Various risk factors can increase susceptibility to thyroid cancer, but particular emphasis is put on the role of DNA repair genes, which have a significant impact on genome stability. Polymorphisms of these genes can increase the risk of developing thyroid cancer by affecting their function. In this article, we present a concise review on the most common polymorphisms of selected DNA repair genes that may influence the risk of thyroid cancer. We point out significant differences in the frequency of these polymorphisms between various populations and their potential relationship with susceptibility to the disease. A more complete understanding of these differences may lead to the development of effective prevention strategies and targeted therapies for thyroid cancer. Simultaneously, there is a need for further research on the role of polymorphisms of previously uninvestigated DNA repair genes in the context of thyroid cancer, which may contribute to filling the knowledge gaps on this subject.
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (A.G.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (A.G.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland;
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
| | - Weronika Kruczkowska
- Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (A.G.); (R.K.)
| |
Collapse
|
2
|
Montenarh M, Götz C. Protein Kinase CK2α', More than a Backup of CK2α. Cells 2023; 12:2834. [PMID: 38132153 PMCID: PMC10741536 DOI: 10.3390/cells12242834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The serine/threonine protein kinase CK2 is implicated in the regulation of fundamental processes in eukaryotic cells. CK2 consists of two catalytic α or α' isoforms and two regulatory CK2β subunits. These three proteins exist in a free form, bound to other cellular proteins, as tetrameric holoenzymes composed of CK2α2/β2, CK2αα'/β2, or CK2α'2/β2 as well as in higher molecular forms of the tetramers. The catalytic domains of CK2α and CK2α' share a 90% identity. As CK2α contains a unique C-terminal sequence. Both proteins function as protein kinases. These properties raised the question of whether both isoforms are just backups of each other or whether they are regulated differently and may then function in an isoform-specific manner. The present review provides observations that the regulation of both CK2α isoforms is partly different concerning the subcellular localization, post-translational modifications, and aggregation. Up to now, there are only a few isoform-specific cellular binding partners. The expression of both CK2α isoforms seems to vary in different cell lines, in tissues, in the cell cycle, and with differentiation. There are different reports about the expression and the functions of the CK2α isoforms in tumor cells and tissues. In many cases, a cell-type-specific expression and function is known, which raises the question about cell-specific regulators of both isoforms. Another future challenge is the identification or design of CK2α'-specific inhibitors.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany;
| | | |
Collapse
|
3
|
Nöthen T, Sarabi MA, Weinert S, Zuschratter W, Morgenroth R, Mertens PR, Braun-Dullaeus RC, Medunjanin S. DNA-Dependent Protein Kinase Mediates YB-1 (Y-Box Binding Protein)-Induced Double Strand Break Repair. Arterioscler Thromb Vasc Biol 2023; 43:300-311. [PMID: 36475703 DOI: 10.1161/atvbaha.122.317922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND DNA-PK (DNA-dependent protein kinase) is a stress-activated serine/threonine kinase that plays a central role in vascular smooth muscle cell proliferation and vascular proliferative disease processes such as neointimal formation. In this study, we link the activation of DNA-PK to the function of the transcription factor YB-1 (Y-box binding protein). METHODS To identify YB-1 phosphorylation by DNA-PK, we generated different YB-1-expressing vectors. YB-1 nuclear translocation was investigated using immunoblotting and immunofluorescence staining. For YB-1 activity, luciferase assays were performed. RESULTS We show by mutational analysis and kinase assay that the transcriptional regulator YB-1 is a substrate of DNA-PK. Blockade of DNA-PK by specific inhibitors revealed its critical involvement in YB-1phosphorylation as demonstrated by inhibition of an overexpressed YB-1 reporter construct. Using DNA-PK-deficient cells, we demonstrate that the shuttling of YB-1 from the cytoplasm to the nucleus is dependent on DNA-PK and that the N-terminal domain of YB-1 is phosphorylated at threonine 89. Point mutation of YB-1 at this residue abrogated the translocation of YB-1 into the nucleus. The phosphorylation of YB-1 by DNA-PK increased cellular DNA repair after exposure to ionizing radiation. Atherosclerotic tissue specimens were analyzed by immunohistochemistry. The DNA-PK subunits and YB-1 phosphorylated at T89 were found colocalized suggesting their in vivo interaction. In mice, the local application of the specific DNA-PK inhibitor NU7026 via thermosensitive Pluronic F-127 gel around dilated arteries significantly reduced the phosphorylation of YB-1. CONCLUSIONS DNA-PK directly phosphorylates YB-1 and, this way, modulates YB-1 function. This interaction could be demonstrated in vivo, and colocalization in human atherosclerotic plaques suggests clinical relevance of our finding. Phosphorylation of YB-1 by DNA-PK may represent a novel mechanism governing atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Till Nöthen
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Sönke Weinert
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Ronnie Morgenroth
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Ruediger C Braun-Dullaeus
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Senad Medunjanin
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
4
|
Rahimi M, Fayaz S, Fard-Esfahani A, Modarressi MH, Akrami SM, Fard-Esfahani P. The role of Ile3434Thr XRCC7 gene polymorphism in differentiated thyroid cancer risk in an Iranian population. IRANIAN BIOMEDICAL JOURNAL 2013. [PMID: 23183621 DOI: 10.6091/ibj.1078.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The aim of this study was to understand any association between differentiated thyroid carcinoma (DTC) and Ile3434Thr XRCC7 gene polymorphism (GenBank accession number: rs7830743). DTC is the most prevalent thyroid neoplasm, which includes papillary and follicular cell carcinoma. XRCC7 gene encodes a protein that functions in non-homologous end joining DNA repair pathway. Non-synonymous polymorphisms in this gene may alter DNA repair capacity of the cell and change the risk of developing cancers. METHODS DTC patients (n = 173) and cancer free individuals (n = 204) were enrolled in a case-control study. The Ile3434Thr polymorphic alleles were discriminated by using amplification refractory mutation system-PCR method. The frequencies of this single nucleotide polymorphism in case and control groups were compared. Also, risk ratio for developing DTC in dichotomized genotypes was estimated by multivariate logistic regression analysis. RESULTS Dichotomized genotypes into those with and without the 3434Thr allele showed that this allele was associated with DTC (OR [odd ratio]: 1.89, 95% confidence interval (CI) = 1.29-2.79, P<0.001). Also, TC genotype was significantly associated with increased risk of DTC (OR: 2.42, 95% CI = 1.55-3.81, P = 0.0001) in individuals carrying this genotype. CONCLUSION Allele 3434Thr in XRCC7 gene might be associated with differentiated thyroid cancer risk. Further studies with larger samples are needed to verify these initial findings.
Collapse
Affiliation(s)
- Maryam Rahimi
- Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Shima Fayaz
- Dept. of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Armaghan Fard-Esfahani
- Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|