1
|
Quantitative Proteomic Analysis Reveals Synaptic Dysfunction in the Amygdala of Rats Susceptible to Chronic Mild Stress. Neuroscience 2018; 376:24-39. [DOI: 10.1016/j.neuroscience.2018.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
|
2
|
Jiang L, Wang H, Chen G, Feng Y, Zou J, Liu M, Liu K, Wang N, Zhang H, Wang K, Xiao X. WDR26/MIP2 interacts with VDAC1 and regulates VDAC1 expression levels in H9c2 cells. Free Radic Biol Med 2018; 117:58-65. [PMID: 29253592 DOI: 10.1016/j.freeradbiomed.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 01/28/2023]
Abstract
MIP2, one of WDR26 isoforms, encodes a 498 amino acid protein with an amino-terminal CTLH domain and five carboxyl-terminal WD40 motifs. MIP2 is localized to the mitochondria and protects cardiomyocytes against oxidative stress; however, nothing is known about how MIP2 confers its cytoprotection. Using co-immunoprecipitation (co-IP) method to isolate MIP2-protein complex from Sprague -Dawley rat heart, followed by mass spectrometry analysis, we have identified VDAC1, a protein located at mitochondria, as a novel MIP2-interacting protein in the myocardium of rat hearts as well as H9c2 cells. This interaction was further confirmed by co-IP assays in the myocardial tissues and H9c2 cardiomyocytes, and by protein overlay assay (POA) in vitro. It was shown that MIP2 overexpression alleviated the H2O2-induced increase of VDAC1 and cell damage, and MIP2 deficiency aggravated the increase of VDAC1 and cell damage in H2O2 -treated H9c2 cells. Our research suggests that the protective effect of MIP2 on the cardiomyocytes against oxidative stress is partly associated with its interaction with VDAC1 and thus inhibiting its expression.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Hao Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Guangbin Chen
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Yansheng Feng
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Jiang Zou
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Meidong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Nian Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Kangkai Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China
| | - Xianzhong Xiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, PR China.
| |
Collapse
|
3
|
Proteomic and network analysis of human serum albuminome by integrated use of quick crosslinking and two-step precipitation. Sci Rep 2017; 7:9856. [PMID: 28851998 PMCID: PMC5575314 DOI: 10.1038/s41598-017-09563-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022] Open
Abstract
Affinity- and chemical-based methods are usually employed to prepare human serum albuminome; however, these methods remain technically challenging. Herein, we report the development of a two-step precipitation (TSP) method by combined use of polyethylene glycol (PEG) and ethanol. PEG precipitation was newly applied to remove immunoglobulin G for albuminome preparation, which is simple, cost effective, efficient and compatible with downstream ethanol precipitation. Nonetheless, chemical extraction using TSP may disrupt weak and transient protein interactions with human serum albumin (HSA) leading to an incomplete albuminome. Accordingly, rapid fixation based on formaldehyde crosslinking (FC) was introduced into the TSP procedure. The developed FC-TSP method increased the number of identified proteins, probably by favouring real-time capture of weakly bound proteins in the albuminome. A total of 171 proteins excluding HSA were identified from the fraction obtained with FC-TSP. Further interaction network and cluster analyses revealed 125 HSA-interacting proteins and 14 highly-connected clusters. Compared with five previous studies, 55 new potential albuminome proteins including five direct and 50 indirect binders were only identified by our strategy and 12 were detected as common low-abundance proteins. Thus, this new strategy has the potential to effectively survey the human albuminome, especially low-abundance proteins of clinical interest.
Collapse
|
4
|
Qiao R, Li S, Zhou M, Chen P, Liu Z, Tang M, Zhou J. In-depth analysis of the synaptic plasma membrane proteome of small hippocampal slices using an integrated approach. Neuroscience 2017; 353:119-132. [PMID: 28435053 DOI: 10.1016/j.neuroscience.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Comprehensive knowledge of the synaptic plasma membrane (SPM) proteome of a distinct brain region in a defined pathological state would greatly advance the understanding of the underlying biology of synaptic plasticity. The development of innovative approaches for studying the SPM proteome of small brain tissues is highly desired. This study presents a suitable protocol that integrates biotinylation-based affinity capture of cell surface-exposed proteins, isolation of synaptosomes, and biochemical extraction of SPM proteins from biotinylated hippocampal slices. The effectiveness of this integrated method was initially confirmed using immunoblot analysis of synaptic markers. Subsequently, we used highly sensitive mass spectrometry and streamlined bioinformatics to analyze the obtained SPM protein-enriched fraction. Our workflow positively identified 241 SPM proteins comprising 85 previously reported classical proteins from the pre- and/or post-synaptic membrane and 156 nonclassical proteins that localized to both the plasma membrane and synapse, and have not been previously reported as SPM proteins. Further analyses revealed considerable similarities in the physicochemical and functional properties of these proteins. Analysis of the interaction network using STRING indicated that the two groups showed a relatively strong functional correlation. Using MCODE analysis, we observed that 65 nonclassical SPM proteins formed 12 highly interconnected clusters with 47 classical SPM proteins, suggesting that they were the more likely SPM candidates. Taken together, the results of this study provide an integrated tool for analyzing the SPM proteome of small brain tissues, as well as a dataset of putative novel SPM proteins to improve the understanding of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Rui Qiao
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mi Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Penghui Chen
- Department of Neurobiology, The Third Military Medical University, Chongqing 400038, China
| | - Zhao Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Min Tang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Jian Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| |
Collapse
|
5
|
Gozes I, Van Dijck A, Hacohen-Kleiman G, Grigg I, Karmon G, Giladi E, Eger M, Gabet Y, Pasmanik-Chor M, Cappuyns E, Elpeleg O, Kooy RF, Bedrosian-Sermone S. Premature primary tooth eruption in cognitive/motor-delayed ADNP-mutated children. Transl Psychiatry 2017; 7:e1043. [PMID: 28221363 PMCID: PMC5438031 DOI: 10.1038/tp.2017.27] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
A major flaw in autism spectrum disorder (ASD) management is late diagnosis. Activity-dependent neuroprotective protein (ADNP) is a most frequent de novo mutated ASD-related gene. Functionally, ADNP protects nerve cells against electrical blockade. In mice, complete Adnp deficiency results in dysregulation of over 400 genes and failure to form a brain. Adnp haploinsufficiency results in cognitive and social deficiencies coupled to sex- and age-dependent deficits in the key microtubule and ion channel pathways. Here, collaborating with parents/caregivers globally, we discovered premature tooth eruption as a potential early diagnostic biomarker for ADNP mutation. The parents of 44/54 ADNP-mutated children reported an almost full erupted dentition by 1 year of age, including molars and only 10 of the children had teeth within the normal developmental time range. Looking at Adnp-deficient mice, by computed tomography, showed significantly smaller dental sacs and tooth buds at 5 days of age in the deficient mice compared to littermate controls. There was only trending at 2 days, implicating age-dependent dysregulation of teething in Adnp-deficient mice. Allen Atlas analysis showed Adnp expression in the jaw area. RNA sequencing (RNAseq) and gene array analysis of human ADNP-mutated lymphoblastoids, whole-mouse embryos and mouse brains identified dysregulation of bone/nervous system-controlling genes resulting from ADNP mutation/deficiency (for example, BMP1 and BMP4). AKAP6, discovered here as a major gene regulated by ADNP, also links cognition and bone maintenance. To the best of our knowledge, this is the first time that early primary (deciduous) teething is related to the ADNP syndrome, providing for early/simple diagnosis and paving the path to early intervention/specialized treatment plan.
Collapse
Affiliation(s)
- I Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Einstein Street, Tel Aviv 6997801, Israel. E-mail:
| | - A Van Dijck
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - G Hacohen-Kleiman
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - I Grigg
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - G Karmon
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - E Giladi
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - M Eger
- Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Y Gabet
- Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - M Pasmanik-Chor
- Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel,The Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - E Cappuyns
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - O Elpeleg
- Monique and Jacques Roboh Department of Genetic, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - R F Kooy
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
6
|
Zhou J, Liu Z, Yu J, Han X, Fan S, Shao W, Chen J, Qiao R, Xie P. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol 2015; 19:pyv100. [PMID: 26364272 PMCID: PMC4772275 DOI: 10.1093/ijnp/pyv100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/31/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While stressful events are recognized as an important cause of major depressive disorder, some individuals exposed to life stressors maintain normal psychological functioning. The molecular mechanism(s) underlying this phenomenon remain unclear. Abnormal transmission and plasticity of hippocampal synapses have been implied to play a key role in the pathoetiology of major depressive disorder. METHODS A chronic mild stress protocol was applied to separate susceptible and unsusceptible rat subpopulations. Proteomic analysis using an isobaric tag for relative and absolute quantitation coupled with tandem mass spectrometry was performed to identify differential proteins in enriched hippocampal synaptic junction preparations. RESULTS A total of 4318 proteins were quantified, and 89 membrane proteins were present in differential amounts. Of these, SynaptomeDB identified 81 (91%) having a synapse-specific localization. The unbiased profiles identified several candidate proteins within the synaptic junction that may be associated with stress vulnerability or insusceptibility. Subsequent functional categorization revealed that protein systems particularly involved in membrane trafficking at the synaptic active zone exhibited a positive strain as potential molecular adaptations in the unsusceptible rats. Moreover, through STRING and immunoblotting analysis, membrane-associated GTP-bound Rab3a and Munc18-1 appear to coregulate syntaxin-1/SNAP25/VAMP2 assembly at the hippocampal presynaptic active zone of unsusceptible rats, facilitating SNARE-mediated membrane fusion and neurotransmitter release, and may be part of a stress-protection mechanism in actively maintaining an emotional homeostasis. CONCLUSIONS The present results support the concept that there is a range of potential protein adaptations in the hippocampal synaptic active zone of unsusceptible rats, revealing new investigative targets that may contribute to a better understanding of stress insusceptibility.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Zhao Liu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Jia Yu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Xin Han
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Songhua Fan
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Weihua Shao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Jianjun Chen
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Rui Qiao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Peng Xie
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie).
| |
Collapse
|
7
|
Zhu W, Liu Y, Ling B. Quantum Mechanics and Molecular Mechanics Study of the Catalytic Mechanism of Human AMSH-LP Domain Deubiquitinating Enzymes. Biochemistry 2015; 54:5225-34. [PMID: 26256234 DOI: 10.1021/acs.biochem.5b00527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Deubiquitinating enzymes (DUBs) catalyze the cleavage of the isopeptide bond in polyubiquitin chains to control and regulate the deubiquitination process in all known eukaryotic cells. The human AMSH-LP DUB domain specifically cleaves the isopeptide bonds in the Lys63-linked polyubiquitin chains. In this article, the catalytic mechanism of AMSH-LP has been studied using a combined quantum mechanics and molecular mechanics method. Two possible hydrolysis processes (Path 1 and Path 2) have been considered. Our calculation results reveal that the activation of Zn(2+)-coordinated water molecule is the essential step for the hydrolysis of isopeptide bond. In Path 1, the generated hydroxyl first attacks the carbonyl group of Gly76, and then the amino group of Lys63 is protonated, which is calculated to be the rate limiting step with an energy barrier of 13.1 kcal/mol. The energy barrier of the rate limiting step and the structures of intermediate and product are in agreement with the experimental results. In Path 2, the protonation of amino group of Lys63 is prior to the nucleophilic attack of activated hydroxyl. The two proton transfer processes in Path 2 correspond to comparable overall barriers (33.4 and 36.1 kcal/mol), which are very high for an enzymatic reaction. Thus, Path 2 can be ruled out. During the reaction, Glu292 acts as a proton transfer mediator, and Ser357 mainly plays a role in stabilizing the negative charge of Gly76. Besides acting as a Lewis acid, Zn(2+) also influences the reaction by coordinating to the reaction substrates (W1 and Gly76).
Collapse
Affiliation(s)
- Wenyou Zhu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University , Jinan, Shandong 250100, China
| | - Yongjun Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University , Jinan, Shandong 250100, China
| | - Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu, Shandong 273165, China
| |
Collapse
|
8
|
Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation. Mol Cell 2015; 59:188-202. [PMID: 26166704 DOI: 10.1016/j.molcel.2015.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/11/2015] [Accepted: 06/02/2015] [Indexed: 11/21/2022]
Abstract
Enhancers instruct spatio-temporally specific gene expression in a manner tightly linked to higher-order chromatin architecture. Critical chromatin architectural regulators condensin I and condensin II play non-redundant roles controlling mitotic chromosomes. But the chromosomal locations of condensins and their functional roles in interphase are poorly understood. Here we report that both condensin complexes exhibit an unexpected, dramatic estrogen-induced recruitment to estrogen receptor α (ER-α)-bound eRNA(+) active enhancers in interphase breast cancer cells, exhibiting non-canonical interaction with ER-α via its DNA-binding domain (DBD). Condensins positively regulate ligand-dependent enhancer activation at least in part by recruiting an E3 ubiquitin ligase, HECTD1, to modulate the binding of enhancer-associated coactivators/corepressors, including p300 and RIP140, permitting full eRNA transcription, formation of enhancer:promoter looping, and the resultant coding gene activation. Collectively, our results reveal an important, unanticipated transcriptional role of interphase condensins in modulating estrogen-regulated enhancer activation and coding gene transcriptional program.
Collapse
|
9
|
Meng Q, Rao L, Pan Y. Enrichment and analysis of rice seedling ubiquitin-related proteins using four UBA domains (GST-qUBAs). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:172-180. [PMID: 25443844 DOI: 10.1016/j.plantsci.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 06/04/2023]
Abstract
Protein ubiquitination is a common posttranslational modification that often occurs on lysine residues. It controls the half-life, interaction and trafficking of intracellular proteins and is involved in different plant development stages and responses to environment stresses. Four Ubiquitin-Associated (UBA) domains were sequentially fused with Glutathione S-transferase (GST) tag (GST-qUBA) as bait protein in this study. A two-step affinity protocol was successfully developed and the identification of ubiquitinated proteins and their interaction proteins increased almost threefold compared to methods that directly identify ubiquitinated proteins from crude samples. A total of 170 ubiquitin-related proteins were identified in GST-qUBAs enriched samples taken from rice seedlings. There were 134 ubiquitinated proteins, 5 ubiquitin-activating enzymes (E1s), 5 ubiquitin-conjugating enzymes (E2s), 19 ubiquitin ligases (E3s) and 7 deubiquitinating enzymes (DUBs), which all contained various key factors that regulated a wide range of biological processes. Moreover, a series of novel ubiquitinated proteins and E3s were identified that had not been previously reported. This study investigated a high-efficiency method for identifying novel ubiquitinated proteins involved in biological processes and a primary mapping of the ubiquitylome during rice seedling development, which could extend our understanding of how ubiquitin modification regulates plant proteins, pathways and cellular processes.
Collapse
Affiliation(s)
- Qingshi Meng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing 100081, China; Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Liqun Rao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Yinghong Pan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing 100081, China; Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
10
|
Abstract
Ubiquitin is a small 8.5 kDa protein that is conjugated to a target protein in a concerted three step enzymatic process. Ubiquitin addition can drastically affect function or target the modified protein for degradation. Ubiquitin modifications have important regulatory roles in disease progression, such as in cancer and neurodegenerative diseases to name a few. As a consequence, it is imperative to identify important ubiquitin targets to elucidate the role of the modification. Proteomic studies have sought to understand this role by identifying proteome-wide ubiquitylated proteins. Two central ideas have developed to characterize the ubiquitylome: affinity purification of ubiquitylated proteins and optimization of GG-peptide enrichment. In this review, we will discuss recent advances in both approaches and discuss how these studies are essential to pharmacoproteomics.
Collapse
Affiliation(s)
- Tanya R Porras-Yakushi
- California Institute of Technology, Beckman Institute, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | | |
Collapse
|
11
|
Catch and measure-mass spectrometry-based immunoassays in biomarker research. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:927-32. [PMID: 24060810 DOI: 10.1016/j.bbapap.2013.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 12/21/2022]
Abstract
Mass spectrometry-based (MS) methods are effective tools for discovering protein biomarker candidates that can differentiate between physiological and pathophysiological states. Promising candidates are validated in studies comprising large patient cohorts. Here, targeted protein analytics are used to increase sample throughput. Methods involving antibodies, such as sandwich immunoassays or Western blots, are commonly applied at this stage. Highly-specific and sensitive mass spectrometry-based immunoassays that have been established in recent years offer a suitable alternative to sandwich immunoassays for quantifying proteins. Mass Spectrometric ImmunoAssays (MSIA) and Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA/iMALDI) are two prominent types of MS-based immunoassays in which the capture is done either at the protein or the peptide level. We present an overview of these emerging types of immunoassays and discuss their suitability for the discovery and validation of protein biomarkers. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
|
12
|
Abstract
Dysfunctions at the level of RNA processing have recently been shown to play a fundamental role in the pathogenesis of many neurodegenerative diseases. Several proteins responsible for these dysfunctions (TDP-43, FUS/TLS, and hnRNP A/Bs) belong to the nuclear class of heterogeneous ribonucleoproteins (hnRNPs) that predominantly function as general regulators of both coding and noncoding RNA metabolism. The discovery of the importance of these factors in mediating neuronal death has represented a major paradigmatic shift in our understanding of neurodegenerative processes. As a result, these discoveries have also opened the way toward novel biomolecular screening approaches in our search for therapeutic options. One of the major hurdles in this search is represented by the correct identification of the most promising targets to be prioritized. These may include aberrant aggregation processes, protein-protein interactions, RNA-protein interactions, or specific cellular pathways altered by disease. In this review, we discuss these four major options together with their various advantages and drawbacks.
Collapse
Affiliation(s)
- Maurizio Romano
- 1Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
13
|
Wood SL, Westbrook JA, Brown JE. Omic-profiling in breast cancer metastasis to bone: implications for mechanisms, biomarkers and treatment. Cancer Treat Rev 2013; 40:139-52. [PMID: 23958309 DOI: 10.1016/j.ctrv.2013.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/16/2013] [Accepted: 07/21/2013] [Indexed: 01/25/2023]
Abstract
Despite well-recognised advances in breast cancer treatment, there remain substantial numbers of patients who develop metastatic disease, of which up to 70% involves spread to bone, resulting in skeletal complications which have a major negative impact on mortality and quality of life. Bisphosphonates and newer bone-targeted agents have reduced the prevalence of skeletal complications, yet there remains significant unmet clinical need, particularly for the development of more specific therapies for the prevention and treatment of metastatic bone disease, for the prediction of risk of its development in individual patients and for the prediction of response to treatments. Modern 'omic' strategies can potentially make a major contribution to meeting this need. Technological advances in the field of nucleic acid sequencing, mass spectrometry and metabolic profiling have driven progress in genomics, transcriptomics (functional genomics), proteomics and metabolomics. This review appraises the recent application of these approaches to studies of breast cancer metastasis (particularly to bone), with a focus on understanding how omic approaches may lead to new therapeutic options and to novel biomarker molecules or molecular signatures with potential value in clinical practise. The increasingly recognised need for rigorous sample quality control and both pre-clinical and clinical validation to meet the ultimate goals of clinical utility and patient benefit is discussed. Future directions of omic driven research in breast cancer metastasis are considered, in particular micro-RNAs and their role in the post-transcriptional regulation of gene function and the possible role of cancer-stem cells and epigenetic modifications in the development of distant metastases.
Collapse
Affiliation(s)
- Steven L Wood
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, UK.
| | | | | |
Collapse
|
14
|
Xiao Y, Chen J. Proteomics approaches in the identification of molecular signatures of mesenchymal stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 129:153-76. [PMID: 22790357 DOI: 10.1007/10_2012_143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor-stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs.
Collapse
Affiliation(s)
- Yin Xiao
- Institute of Health and Biomedical Innovation Queensland University of Technology, 60 Musk Avenue, Kelvin Grove Brisbane, QLD, 4059, Australia,
| | | |
Collapse
|