1
|
Andreis M, Paolocci N. TRIM55: An Enemy at the Post-MI Border?: TRIMming May Not Always Be Good. JACC Basic Transl Sci 2024; 9:1123-1125. [PMID: 39444929 PMCID: PMC11494385 DOI: 10.1016/j.jacbts.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- Marco Andreis
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità pubblica, University of Padova, Padova, Italy
| | - Nazareno Paolocci
- Dipartimento di Scienze Biomediche, Universita’ di Padova, Padova, Italy
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Rexius-Hall ML, Khalil NN, Escopete SS, Li X, Hu J, Yuan H, Parker SJ, McCain ML. A myocardial infarct border-zone-on-a-chip demonstrates distinct regulation of cardiac tissue function by an oxygen gradient. SCIENCE ADVANCES 2022; 8:eabn7097. [PMID: 36475790 PMCID: PMC9728975 DOI: 10.1126/sciadv.abn7097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome. The gradient delayed calcium release, reuptake, and propagation; decreased diastolic and peak systolic stress; and increased expression of inflammatory cascades that are hallmarks of myocardial infarction. These changes were distinct from those observed in tissues exposed to uniform normoxia or hypoxia, demonstrating distinct regulation of cardiac tissue phenotypes by an oxygen gradient. Our border-zone-on-a-chip model advances functional and mechanistic insight into oxygen-dependent cardiac tissue pathophysiology.
Collapse
Affiliation(s)
- Megan L. Rexius-Hall
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Natalie N. Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sean S. Escopete
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xin Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayi Hu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongyan Yuan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sarah J. Parker
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Corresponding author.
| |
Collapse
|
3
|
Waters R, Pacelli S, Maloney R, Medhi I, Ahmed RPH, Paul A. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. NANOSCALE 2016; 8:7371-6. [PMID: 26876936 PMCID: PMC4863075 DOI: 10.1039/c5nr07806g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration.
Collapse
Affiliation(s)
- Renae Waters
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| | - Settimio Pacelli
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| | - Ryan Maloney
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| | - Indrani Medhi
- SRM University, Kattankulathur 603203, Tamilnadu, India
| | - Rafeeq P H Ahmed
- Department of Pathology, University of Cincinnati, 231-Albert Sabin Way, Cincinnati 45267, OH, USA
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
4
|
Hypoxic conditioned medium from rat cerebral cortical cells enhances the proliferation and differentiation of neural stem cells mainly through PI3-K/Akt pathways. PLoS One 2014; 9:e111938. [PMID: 25386685 PMCID: PMC4227679 DOI: 10.1371/journal.pone.0111938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 10/01/2014] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate the effects of hypoxic conditioned media from rat cerebral cortical cells on the proliferation and differentiation of neural stem cells (NSCs) in vitro, and to study the roles of PI3-K/Akt and JNK signal transduction pathways in these processes. Methods Cerebral cortical cells from neonatal Sprague–Dawley rat were cultured under hypoxic and normoxic conditions; the supernatant was collected and named ‘hypoxic conditioned medium’ (HCM) and ‘normoxic conditioned medium’ (NCM), respectively. We detected the protein levels (by ELISA) of VEGF and BDNF in the conditioned media and mRNA levels (by RT-PCR) in cerebral cortical cells. The proliferation (number and size of neurospheres) and differentiation (proportion of neurons and astrocytes over total cells) of NSCs was assessed. LY294002 and SP600125, inhibitors of PI3-K/Akt and JNK, respectively, were applied, and the phosphorylation levels of PI3-K, Akt and JNK were measured by western blot. Results The protein levels and mRNA expressions of VEGF and BDNF in 4% HCM and 1% HCM were both higher than that of those in NCM. The efficiency and speed of NSCs proliferation was enhanced in 4% HCM compared with 1% HCM. The highest percentage of neurons and lowest percentage of astrocytes was found in 4% HCM. However, the enhancement of NSCs proliferation and differentiation into neurons accelerated by 4% HCM was inhibited by LY294002 and SP600125, with LY294002 having a stronger inhibitory effect. The increased phosphorylation levels of PI3-K, Akt and JNK in 4% HCM were blocked by LY294002 and SP600125. Conclusions 4%HCM could promote NSCs proliferation and differentiation into high percentage of neurons, these processes may be mainly through PI3-K/Akt pathways.
Collapse
|
5
|
Abrial M, Da Silva CC, Pillot B, Augeul L, Ivanes F, Teixeira G, Cartier R, Angoulvant D, Ovize M, Ferrera R. Cardiac fibroblasts protect cardiomyocytes against lethal ischemia-reperfusion injury. J Mol Cell Cardiol 2014; 68:56-65. [PMID: 24440456 DOI: 10.1016/j.yjmcc.2014.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
Roles of cardiac fibroblasts (CFs) in the regulation of myocardial structure and function have been emphasized in the last decade. Their implications in pathophysiological aspects of chronic heart diseases such as myocardial remodeling and fibrosis are now well established; however their contribution to the acute phase of ischemia-reperfusion injury still remains elusive. We hypothesized that CF may contribute to cardiomyocyte (CM) protection against ischemia-reperfusion injuries. Experiments performed on isolated neonatal rat CF and CM demonstrated that the presence of CF in co-cultures increases CM viability (58 ± 2% versus 30 ± 2% in control) against hypoxia-reoxygenation injury, in a paracrine manner. It was confirmed by a similar effect of hypoxic CF secretome alone on CM viability (51 ± 9% versus 31 ± 4% in untreated cells). These findings were corroborated by in vivo experiments in a mice model of myocardial infarction in which a 25% infarct size reduction was observed in CF secretome treated mice compared to control. Tissue inhibitor of metalloproteinases-1 (TIMPs-1) alone, abundantly detected in CF secretome, was able to decrease CM cell death (35%) and experiments with pharmacological inhibitors of PI3K/Akt and ERK1/2 pathways provided more evidence that this paracrine protection is partly mediated by these signaling pathways. In vivo experiments strengthened that TIMP-1 alone was able to decrease infarct size (37%) and were validated by depletion experiments demonstrating that CF secretome cardioprotection was abolished by TIMP-1 depletion. Our data demonstrated for the first time that CFs participate in cardioprotection during the acute phase of ischemia-reperfusion via a paracrine pathway involving TIMP-1.
Collapse
Affiliation(s)
- Maryline Abrial
- INSERM U1060, CarMeN Laboratory, Université Lyon 1, F-69373 Lyon, France.
| | | | - Bruno Pillot
- INSERM U1060, CarMeN Laboratory, Université Lyon 1, F-69373 Lyon, France
| | - Lionel Augeul
- INSERM U1060, CarMeN Laboratory, Université Lyon 1, F-69373 Lyon, France
| | - Fabrice Ivanes
- INSERM U1060, CarMeN Laboratory, Université Lyon 1, F-69373 Lyon, France; Université François Rabelais EA 4245, CHRU Tours, Hôpital Trousseau, Service de Cardiologie, F-37044 Tours, France
| | - Geoffrey Teixeira
- INSERM U1060, CarMeN Laboratory, Université Lyon 1, F-69373 Lyon, France
| | - Régine Cartier
- Hospices Civils de Lyon, Hôpital Louis Pradel, Service d'Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, F-69394 Lyon, France
| | - Denis Angoulvant
- Université François Rabelais EA 4245, CHRU Tours, Hôpital Trousseau, Service de Cardiologie, F-37044 Tours, France
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Université Lyon 1, F-69373 Lyon, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Service d'Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, F-69394 Lyon, France
| | - René Ferrera
- INSERM U1060, CarMeN Laboratory, Université Lyon 1, F-69373 Lyon, France
| |
Collapse
|
6
|
Hadjipanayi E, Schilling AF. Hypoxia-based strategies for angiogenic induction: the dawn of a new era for ischemia therapy and tissue regeneration. Organogenesis 2013; 9:261-72. [PMID: 23974216 PMCID: PMC3903695 DOI: 10.4161/org.25970] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Therapeutic angiogenesis promises to aid the healing and regeneration of tissues suffering from a compromised vascular supply. Ischaemia therapy has so far primarily focused on delivering isolated angiogenic growth factors. The limited success of these strategies in clinical trials, however, is increasingly forcing researchers to recognize the difficulties associated with trying to mimic the angiogenic process, due to its natural complexity. Instead, a new school of thought is gradually emerging, focusing on how to induce angiogenesis at its onset, by utilizing hypoxia, the primary angiogenic stimulus in physiological, as well pathological states. This shift in therapeutic approach is underlined by the realization of the importance of depressed HIF-1 α-mediated gene programming in non-healing ischemic tissues, which could explain their apparent habituation to chronic hypoxic stress and the limited capacity to generate adaptive angiogenesis. Hypoxia-based strategies, then effectively aim to override the habituated angiogenic cellular response, re-start the regenerative process and drive it to completion. Here we make a distinction between those strategies that utilize hypoxia in vitro as a preconditioning tool to optimize the angiogenic potential of tissue/cells before transplantation, vs. strategies that aim to induce hypoxia-induced signaling in vivo, directly, through pharmacological means or gene transfer. We then discuss possible future directions for the field, as it moves into the phase of clinical trials.
Collapse
Affiliation(s)
- Ektoras Hadjipanayi
- Experimental Plastic Surgery; Clinic for Plastic and Hand Surgery; Klinikum Rechts der Isar; Technische Universität München; Munich, Germany; Department of Plastic, Reconstructive, Hand and Burn Surgery; Bogenhausen Hospital; Munich, Germany
| | - Arndt F Schilling
- Experimental Plastic Surgery; Clinic for Plastic and Hand Surgery; Klinikum Rechts der Isar; Technische Universität München; Munich, Germany; Center for Applied New Technologies in Engineering for Regenerative Medicine (Canter); Munich, Germany
| |
Collapse
|