1
|
de Morais H, Bôas SKFV, de Souza CO, Miksza DR, Moreira CCL, Kurauti MA, Silva FDF, Cassolla P, Silva FGD, Limiere LC, Grassiolli S, Bazotte RB, de Souza HM. Peripheral insulin resistance is early, progressive, and correlated with cachexia in Walker-256 tumor-bearing rats. Cell Biochem Funct 2023; 41:1252-1262. [PMID: 37787620 DOI: 10.1002/cbf.3859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
Insulin (INS) resistance is often found in cancer-bearing, but its correlation with cachexia development is not completely established. This study investigated the temporal sequence of the development of INS resistance and cachexia to establish the relationship between these factors in Walker-256 tumor-bearing rats (TB rats). INS hepatic sensitivity and INS resistance-inducing factors, such as free fatty acids (FFA) and tumor necrosis factor-α (TNF-α), were also evaluated. Studies were carried out on Days 2, 5, 8, and/or 12 after inoculation of tumor cells in rats. The peripheral INS sensitivity was assessed by the INS tolerance test and the INS hepatic sensitivity in in situ liver perfusion. TB rats with 5, 8, and 12 days of tumor, but not 2 days, showed decreased peripheral INS sensitivity (INS resistance), retroperitoneal fat, and body weight, compared to healthy rats, which were more pronounced on Day 12. Gastrocnemius muscle wasting was observed only on Day 12 of tumor. The peripheral INS resistance was significantly correlated (r = -.81) with weight loss. Liver INS sensitivity of TB rats with 2 and 5 days of tumor was unchanged, compared to healthy rats. TB rats with 12 days of tumor showed increased plasma FFA and increased TNF-α in retroperitoneal fat and liver, but not in the gastrocnemius, compared to healthy rats. In conclusion, peripheral INS resistance is early, starts along with fat and weight loss and before muscle wasting, progressive, and correlated with cachexia, suggesting that it may play an important role in the pathogenesis of the cachectic process in TB rats. Therefore, early correction of INS resistance may be a therapeutic approach to prevent and treat cancer cachexia.
Collapse
Affiliation(s)
- Hely de Morais
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Camila O de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniele Romani Miksza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Carolina C L Moreira
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Mirian Ayumi Kurauti
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Flaviane de F Silva
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Priscila Cassolla
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | - Sabrina Grassiolli
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Roberto B Bazotte
- Department of Physiological Sciences, State University of Maringa, Maringá, Paraná, Brazil
| | - Helenir M de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
2
|
Frasson-Uemura IG, Biazi GR, Miksza DR, Moreira CCL, Cassolla P, Bertolini GL, Bazotte RB, de Souza HM. Infusion of high concentration of lactate in perfused liver, simulating in vivo hyperlactatemia, prevents the reduction of gluconeogenesis in Walker-256 tumor-bearing rats. J Cell Biochem 2019; 120:11068-11080. [PMID: 30719751 DOI: 10.1002/jcb.28384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Gluconeogenesis (GN) is increased in patients with cancer cachexia, but is reduced in liver perfusion of Walker-256 tumor-bearing cachectic rats (TB rats). The causes of these differences are unknown. We investigated the influence of circulating concentrations of lactate (NADH generator) and NADH on GN in perfused livers of TB rats. Lactate, at concentrations similar to those found on days 5 (3.0 mM), 8 (5.5 mM), and 12 (8.0 mM) of the tumor, prevented the reduction of GN from 2.0 mM lactate (lactatemia of healthy rat) in TB rats. NADH, 50 or 75 μM, but not 25 μM, increased GN from 2.0 mM lactate in TB rats to higher values than healthy rats. High concentrations of pyruvate (no NADH generator, 5.0 and 8.0 mM) did not prevent the reduction of GN from 2.0 mM pyruvate in TB rats. However, 50 or 75 μM NADH, but not 25 μM, increased GN from 2.0 mM pyruvate in TB rats to similar or higher values than healthy rats. High concentration of glutamine (NADH generator, 2.5 mM) or 50 μM NADH prevented the reduction of GN from 1 mM glutamine in TB rats. Intraperitoneal administration of pyruvate (1.0 mg/kg) or glutamine (0.5 mg/kg) similarly increased the glycemia of healthy and TB rats. In conclusion, high lactate concentration, similar to hyperlactatemia, prevented the reduction of GN in perfused livers of TB rats, an effect probably caused by the increased redox potential (NADH/NAD+ ). Thus, the decreased GN in livers from TB rats is due, at least in part, to the absence of simulation of in vivo hyperlactatemia in liver perfusion studies.
Collapse
Affiliation(s)
| | - Giuliana Regina Biazi
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniele Romani Miksza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Priscila Cassolla
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Helenir Medri de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
3
|
Biazi GR, Frasson IG, Miksza DR, de Morais H, de Fatima Silva F, Bertolini GL, de Souza HM. Decreased hepatic response to glucagon, adrenergic agonists, and cAMP in glycogenolysis, gluconeogenesis, and glycolysis in tumor-bearing rats. J Cell Biochem 2018; 119:7300-7309. [PMID: 29761924 DOI: 10.1002/jcb.27027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Abstract
The response to glucagon and adrenaline in cancer cachexia is poorly known. The aim of this study was to investigate the response to glucagon, adrenergic agonists (α and β) and cyclic adenosine monophosphate (cAMP) on glycogenolysis, gluconeogenesis, and glycolysis in liver perfusion of Walker-256 tumor-bearing rats with advanced cachexia. Liver ATP content was also investigated. Rats without tumor (healthy) were used as controls. Agonists α (phenylephrine) and β (isoproterenol) adrenergic, instead of adrenaline, and cAMP, the second messenger of glucagon and isoproterenol, were used in an attempt to identify mechanisms involved in the responses. Glucagon (1 nM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in the liver of healthy and tumor-bearing rats, but their effects were lower in tumor-bearing rats. Isoproterenol (20 µM) stimulated glycogenolysis, gluconeogenesis, and glycolysis in healthy rats and had virtually no effect in tumor-bearing rats. cAMP (9 µM) also stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in healthy rats but had practically no effect in tumor-bearing rats. Phenylephrine (2 µM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis and these effects were also lower in tumor-bearing rats than in healthy. Liver ATP content was lower in tumor-bearing rats. In conclusion, tumor-bearing rats with advanced cachexia showed a decreased hepatic response to glucagon, adrenergic agonists (α and β), and cAMP in glycogenolysis, gluconeogenesis, and glycolysis, which may be due to a reduced rate of regulatory enzyme phosphorylation caused by the low ATP levels in the liver.
Collapse
Affiliation(s)
- Giuliana R Biazi
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Isabele G Frasson
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Daniele R Miksza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Hely de Morais
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Gisele L Bertolini
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Helenir M de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
4
|
de Fatima Silva F, Ortiz-Silva M, Galia WBDS, Cassolla P, da Silva FG, Graciano MFR, Carpinelli AR, de Souza HM. Effects of metformin on insulin resistance and metabolic disorders in tumor-bearing rats with advanced cachexia. Can J Physiol Pharmacol 2018; 96:498-505. [PMID: 29304290 DOI: 10.1139/cjpp-2017-0171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Metformin (MET) is widely used in the correction of insulin (INS) resistance and metabolic abnormalities in type 2 diabetes. However, its effect on INS resistance and metabolic disorders associated with cancer cachexia is not established. We investigated the MET effects, isolated or associated with INS, on INS resistance and metabolic changes induced by Walker-256 tumor in rats with advanced cachexia. MET (500 mg·kg-1, oral) and MET + INS (1.0 IU·kg-1, s.c.) were administered for 12 days, starting on the day of tumor cell inoculation. Tumor-bearing rats showed adipose and muscle mass wasting, body mass loss, anorexia, decreased Akt phosphorylation in retroperitoneal and mesenteric adipose tissue, peripheral INS resistance, hypoinsulinemia, reduced INS content and secretion from pancreatic islets, and also inhibition of glycolysis, gluconeogenesis, and glycogenolysis in liver. MET and MET + INS treatments did not prevent these changes. It can be concluded that treatments with MET and MET + INS did not prevent the adipose and muscle mass wasting and body mass loss of tumor-bearing rats possibly by not improving INS resistance. Therefore, MET, used for the treatment of INS resistance in type 2 diabetes, is not effective in improving INS resistance in the advanced stage of cancer cachexia, evidencing that the drug does not have the same beneficial effect in these 2 diseases.
Collapse
Affiliation(s)
- Flaviane de Fatima Silva
- a Department of Physiological Sciences, State University of Londrina, 86051-990, Londrina, PR, Brazil
| | - Milene Ortiz-Silva
- a Department of Physiological Sciences, State University of Londrina, 86051-990, Londrina, PR, Brazil
| | | | - Priscila Cassolla
- a Department of Physiological Sciences, State University of Londrina, 86051-990, Londrina, PR, Brazil
| | | | | | - Angelo Rafael Carpinelli
- b Department of Physiology and Biophysics, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Helenir Medri de Souza
- a Department of Physiological Sciences, State University of Londrina, 86051-990, Londrina, PR, Brazil
| |
Collapse
|
5
|
Short-term treatment with metformin reduces hepatic lipid accumulation but induces liver inflammation in obese mice. Inflammopharmacology 2018; 26:1103-1115. [PMID: 29450671 DOI: 10.1007/s10787-018-0443-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
The study aimed to evaluate the metabolic and inflammatory effects of short-term treatments (10 days) with metformin (MET) on the NAFLD caused by a high-fat diet (HFD) in C57BL/6 mice. After the treatment, histological liver slices were obtained, hepatocytes and macrophages were extracted and cultured with phosphate buffered saline, LPS (2.5 µg/mL) and MET (1 µM) for 24 h. Cytokine levels were determined by ELISA. NAFLD caused by the HFD was partially reduced by MET. The lipid accumulation induced by the HFD was not associated with liver inflammation; however, MET seemed to promote pro-inflammatory effects in liver, since it increased hepatic concentration of IL-1β, TNF-α, IL-6, MCP-1 and IFN-γ. Similarly, MET increased the concentration of IL-1β, IL-6 in hepatocyte cultures. However, in macrophages culture, MET lowered levels of IL-1β, IL-6 and TNF-α stimulated by LPS. Overall, MET reduced liver NAFLD but promoted hepatocyte increase in pro-inflammatory cytokines, thus, leading to liver inflammation.
Collapse
|
6
|
Martins HA, Bazotte RB, Vicentini GE, Lima MM, Guarnier FA, Hermes-Uliana C, Frez FCV, Bossolani GDP, Fracaro L, Fávaro LDS, Manzano MI, Zanoni JN. l-Glutamine supplementation promotes an improved energetic balance in Walker-256 tumor-bearing rats. Tumour Biol 2017; 39:1010428317695960. [PMID: 28345452 DOI: 10.1177/1010428317695960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We evaluated the effects of supplementation with oral l-glutamine in Walker-256 tumor-bearing rats. A total of 32 male Wistar rats aged 54 days were randomly divided into four groups: rats without Walker-256 tumor, that is, control rats (C group); control rats supplemented with l-glutamine (CG group); Walker-256 tumor rats without l-glutamine supplementation (WT group); and WT rats supplemented with l-glutamine (WTG group). l-Glutamine was incorporated into standard food at a proportion of 2 g/100 g (2%). After 10 days of the experimental period, the jejunum and duodenum were removed and processed. Protein expression levels of key enzymes of gluconeogenesis, that is, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, were analyzed by western blot and immunohistochemical techniques. In addition, plasma corticosterone, glucose, insulin, and urea levels were evaluated. The WTG group showed significantly increased plasma glucose and insulin levels ( p < 0.05); however, plasma corticosterone and urea remained unchanged. Moreover, the WTG group showed increased immunoreactive staining for jejunal phosphoenolpyruvate carboxykinase and increased expression of duodenal glucose-6-phosphatase. Furthermore, the WTG group presented with less intense cancer cachexia and slower tumor growth. These results could be attributed, at least partly, to increased intestinal gluconeogenesis and insulinemia, and better glycemia maintenance during fasting in Walker-256 tumor rats on a diet supplemented with l-glutamine.
Collapse
Affiliation(s)
- Heber Amilcar Martins
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Roberto Barbosa Bazotte
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Mariana Machado Lima
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Catchia Hermes-Uliana
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | - Luciane Fracaro
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | | |
Collapse
|
7
|
de Morais H, de Fatima Silva F, da Silva FG, Silva MO, Graciano MFR, Martins MIL, Carpinelli ÂR, Mazucco TL, Bazotte RB, de Souza HM. Insulin, not glutamine dipeptide, reduces lipases expression and prevents fat wasting and weight loss in Walker 256 tumor-bearing rats. Eur J Pharmacol 2017; 806:67-74. [PMID: 28390870 DOI: 10.1016/j.ejphar.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/27/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022]
Abstract
Cachexia is the main cause of mortality in advanced cancer patients. We investigated the effects of insulin (INS) and glutamine dipeptide (GDP), isolated or associated, on cachexia and metabolic changes induced by Walker 256 tumor in rats. INS (NPH, 40 UI/kg, sc) or GDP (1.5g/kg, oral gavage) was once-daily administered during 11 days after tumor cell inoculation. GDP, INS or INS+GDP treatments did not influence the tumor growth. However, INS and INS+GDP prevented retroperitoneal fat wasting and body weight loss of tumor-bearing rats. In consistency, INS and INS+GDP prevented the increased expression of triacylglycerol lipase (ATGL) and hormone sensitive lipase (HSL), without changing the expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in the retroperitoneal adipose tissue of tumor-bearing rats. INS and INS+GDP also prevented anorexia and hyperlactatemia of tumor-bearing rats. However, INS and INS+GDP accentuated the loss of muscle mass (gastrocnemius, soleus and long digital extensor) without affecting the myostatin expression in the gastrocnemius muscle and blood corticosterone. GDP treatment did not promote beneficial effects. It can be concluded that treatment with INS (INS or INS+GDP), not with GDP, prevented fat wasting and weight loss in tumor-bearing rats without reducing tumor growth. These effects might be attributed to the reduction of lipases expression (ATGL and LHS) and increased food intake. The results show the physiological function of INS in the suppression of lipolysis induced by cachexia mediators in tumor-bearing rats.
Collapse
Affiliation(s)
- Hely de Morais
- Department of Physiological Sciences, State University of Londrina, 86051-990 Londrina, PR, Brazil
| | - Flaviane de Fatima Silva
- Department of Physiological Sciences, State University of Londrina, 86051-990 Londrina, PR, Brazil
| | | | - Milene Ortiz Silva
- Department of Physiological Sciences, State University of Londrina, 86051-990 Londrina, PR, Brazil
| | | | | | - Ângelo Rafael Carpinelli
- Department of Physiology and Biophysics, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Tânia Longo Mazucco
- Department of Clinical Medical, State University of Londrina, 86057-970 Londrina, PR, Brazil
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | - Helenir Medri de Souza
- Department of Physiological Sciences, State University of Londrina, 86051-990 Londrina, PR, Brazil.
| |
Collapse
|
8
|
Supplementation with l-glutamine prevents tumor growth and cancer-induced cachexia as well as restores cell proliferation of intestinal mucosa of Walker-256 tumor-bearing rats. Amino Acids 2016; 48:2773-2784. [DOI: 10.1007/s00726-016-2313-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
|
9
|
Fracaro L, Frez F, Silva B, Vicentini G, de Souza S, Martins H, Linden D, Guarnier F, Zanoni J. Walker 256 tumor-bearing rats demonstrate altered interstitial cells of Cajal. Effects on ICC in the Walker 256 tumor model. Neurogastroenterol Motil 2016; 28:101-15. [PMID: 26526599 PMCID: PMC4688090 DOI: 10.1111/nmo.12702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cachexia is a significant problem in patients with cancer. The effect of cancer on interstitial cells of Cajal (ICC) and neurons of the gastrointestinal tract have not been studied previously. Although supplementation with L-glutamine 2% may have beneficial effects in cancer-related cachexia, and be protective of ICC in models of oxidative stress such as diabetes, its effects on ICC in cancer have also not been studied. METHODS Twenty-eight male Wistar rats were divided into four groups: control (C), control supplemented with L-glutamine (CG), Walker 256 tumor (WT), and Walker 256 tumor supplemented with L-glutamine (WTG). Rats were implanted with tumor cells or injected with saline in the right flank. After 14 days, the jejunal tissues were collected and processed for immunohistochemical techniques including whole mounts and cryosections and Western blot analysis. KEY RESULTS Tumor-bearing rats demonstrate reduced numbers of Myenteric ICC and deep muscular plexus ICC and yet increased Ano1 protein expression and enhanced ICC networks. In addition, there is more nNOS protein expressed in tumor-bearing rats compared to controls. L-glutamine treatment had a variety of effects on ICC that may be related to the disease state and the interaction of ICC and nNOS neurons. Regardless, L-glutamine reduced the size of tumors and also tumor-induced cachexia that was not due to altered food intake. CONCLUSIONS & INFERENCES There are significant effects on ICC in the Walker 256 tumor model. Although supplementation with L-glutamine has differential and complex effects of ICC, it reduces tumor size and tumor-associated cachexia, which supports its beneficial therapeutic role in cancer.
Collapse
Affiliation(s)
- L. Fracaro
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - F.C.V. Frez
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - B.C. Silva
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - G.E. Vicentini
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - S.R.G. de Souza
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - H.A. Martins
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - D.R. Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - F.A. Guarnier
- Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - J.N. Zanoni
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil,Address for Correspondence: Prof Jacqueline Nelisis Zanoni, Department of Morfological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, 87020-900, Brazil. Tel: (+55) 443011-5944; ,
| |
Collapse
|
10
|
de Souza CO, Kurauti MA, de Fatima Silva F, de Morais H, Borba-Murad GR, de Andrade FG, de Souza HM. Effects of celecoxib and ibuprofen on metabolic disorders induced by Walker-256 tumor in rats. Mol Cell Biochem 2014; 399:237-46. [PMID: 25359170 DOI: 10.1007/s11010-014-2250-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
The contribution of anti-inflammatory property of celecoxib in the improvement of metabolic disorders in cancer is unknown. The purpose of this study was to compare the effects of celecoxib and ibuprofen, non-steroidal anti-inflammatory drugs (NSAIDs), on several metabolic changes observed in Walker-256 tumor-bearing rats. The effects of these NSAIDs on the tumor growth were also assessed. Celecoxib or ibuprofen (both at 25 mg/Kg) was administered orally for 12 days, beginning on the day the rats were inoculated with Walker-256 tumor cells. Celecoxib treatment prevented the losses in body mass and mass of retroperitoneal adipose tissue, gastrocnemius, and extensor digitorum longus muscles in tumor-bearing rats. Celecoxib also prevented the rise in blood levels of triacylglycerol, urea, and lactate, the inhibition of peripheral response to insulin and hepatic glycolysis, and tended to attenuate the decrease in the food intake, but had no effect on the reduction of glycemia induced by the tumor. In addition, celecoxib treatment increased the number of Walker-256 cells with signs of apoptosis and the tumor necrosis area and prevented the tumor growth. In contrast, ibuprofen treatment had no effect on metabolic parameters affected by the Walker-256 tumor or tumor growth. It can be concluded that celecoxib, unlike ibuprofen, ameliorated several metabolic changes in rats with Walker-256 tumor due to its anti-tumor effect and not its anti-inflammatory property.
Collapse
Affiliation(s)
- Camila Oliveira de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, 86051-990, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Schiavon FPM, Marques ADCR, Carrara MA, de Souza HM, Schamber CR, Curi R, Bazotte RB. Pivotal role of cAMP in the activation of liver glycogen breakdown in high-fat diet fed mice. Life Sci 2014; 109:111-5. [PMID: 24968301 DOI: 10.1016/j.lfs.2014.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 01/14/2023]
Abstract
AIMS Liver glycogen catabolism was evaluated in male Swiss mice fed a high-fat diet rich in saturated fatty acids (HFD) or normal fat diet (NFD) during one week. MAIN METHODS Liver glycogenolysis (LG) and liver glucose production (LGP) were measured either under basal or stimulated conditions (infusion of glycogenolytic agents). Thus, isolated perfused livers from HFD and NFD mice were infused with glycogenolytic agents, i.e., glucagon, epinephrine, phenylephrine, isoproterenol, adenosine-3'-5'-cyclic monophosphate (cAMP), N(6),2'-O-dibutyryl-cAMP (DB-cAMP), 8-bromoadenosine-cAMP (8-Br-cAMP) or N(6)-monobutyryl-cAMP (N6-MB-cAMP). Moreover, glycemia and liver glycogen content were measured. KEY FINDINGS Glycemia, liver glycogen content and basal rate of LGP and LG were not influenced by the HFD. However, LGP and LG were lower (p<0.05) in HFD mice during the infusions of glucagon (1 nM), epinephrine (20 μM) or phenylephrine (20 μM). In contrast, the activation of LGP and LG during the infusion of isoproterenol (20 μM) was not different (HFD vs. NFD). Because glucagon showed the most prominent response, the effect of cAMP, its intracellular mediator, on LGP and LG was investigated. cAMP (150 μM) showed lower activation of LGP and LG in the HFD group. However, the activation of LGP and LG was not influenced by HFD whether DB-cAMP (3 μM), 8-Br-cAMP (3 μM) or N6-MB-cAMP (3 μM) were used. SIGNIFICANCE The activation of LGP and LG depends on the intracellular availability of cAMP. It can be concluded that cAMP played a pivotal role on the activation of LG in high-fat diet fed mice.
Collapse
Affiliation(s)
- Fabiana P M Schiavon
- Department of Pharmacology and Therapeutic, State University of Maringá, Maringá, PR 87020-900, Brazil
| | | | | | - Helenir Medri de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR 86051-990, Brazil
| | | | - Rui Curi
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Roberto B Bazotte
- Department of Pharmacology and Therapeutic, State University of Maringá, Maringá, PR 87020-900, Brazil.
| |
Collapse
|
12
|
da Rocha AF, Liboni TF, Kurauti MA, de Souza CO, Miksza DR, Moreira CCL, Borba-Murad GR, Bazotte RB, de Souza HM. Tumor necrosis factor alpha abolished the suppressive effect of insulin on hepatic glucose production and glycogenolysis stimulated by cAMP. Pharmacol Rep 2014; 66:380-5. [PMID: 24905512 DOI: 10.1016/j.pharep.2013.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNFα) is implicated in the development of insulin resistance in obesity, type 2 diabetes and cancer. However, its ability to modulate the action of insulin on glycogen catabolism in the liver is controversial. The aim of the present study was to investigate whether TNFα acutely affects the suppression by insulin of hepatic glucose production (HGP) and glycogenolysis stimulated by cyclic adenosine monophosphate (cAMP). METHODS TNFα (10 μg/kg) was injected intravenously to rats and, 1 or 6h later, their livers were subjected to in situ perfusion with cAMP (3 μM), in the presence or absence of physiological (20 μU/mL) or supraphysiological (500 μU/mL) concentrations of insulin. RESULTS The injection of TNFα, 1 or 6h before liver perfusion, had no direct effect on the action of cAMP in stimulating HGP and glycogenolysis. However, when TNFα was injected 1h, but not 6h, before liver perfusion it completely abolished (p<0.05) the suppressive effect of 20 μU/mL insulin on HGP and glycogenolysis stimulated by cAMP. Furthermore, the injection of TNFα 1h or 6h before liver perfusion did not influence the suppression of cAMP-stimulated HGP and glycogenolysis by 500 μU/mL insulin. CONCLUSION TNFα acutely abolished the suppressive effect of physiological, but not supraphysiological, levels of insulin on HGP and glycogenolysis stimulated by cAMP, suggesting an important role of this mechanism to the increased HGP in several pathological states.
Collapse
Affiliation(s)
- Aline Franco da Rocha
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Thaís Fernanda Liboni
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Mirian Ayumi Kurauti
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Daniele Romani Miksza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | | | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | - Helenir Medri de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
13
|
Miksza DR, de Souza CO, de Morais H, da Rocha AF, Borba-Murad GR, Bazotte RB, de Souza HM. Effect of infliximab on metabolic disorders induced by Walker-256 tumor in rats. Pharmacol Rep 2013; 65:960-9. [DOI: 10.1016/s1734-1140(13)71077-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 03/11/2013] [Indexed: 11/30/2022]
|