1
|
Koehn LM, Nguyen KV, Tucker R, Lim YP, Chen X, Stonestreet BS. Inter-alpha Inhibitor Proteins Modulate Microvascular Endothelial Components and Cytokines After Exposure to Hypoxia-Ischemia in Neonatal Rats. Mol Neurobiol 2025; 62:5057-5072. [PMID: 39505805 DOI: 10.1007/s12035-024-04594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Inter-alpha inhibitor proteins (IAIPs) are neuroprotective and attenuate lipopolysaccharide (LPS)-mediated blood-brain barrier (BBB) disruption in neonatal rodents. We investigated some mechanism(s) fundamental to neuroprotection by IAIPs including changes in cerebral endothelial components and inflammation. Postnatal day-7 rats exposed to sham surgery and placebo or carotid ligation plus 8% FiO2 (90 min) were given IAIPs (30 or 60 mg/kg) or placebo and were killed 6, 12, 24, or 36 h after hypoxia-ischemia (HI). Proteins regulating BBB permeability to leukocytes (vascular cell adhesion molecule 1, VCAM-1), lipid-soluble (P-glycoprotein, PGP), and lipid-insoluble molecules (zonula occludens-1, ZO-1) were measured by immunoblot, and cytokines were measured in serum and cortex. HI resulted in reductions in ZO-1 and increases in VCAM-1, PGP, interferon-γ (IFN-γ), interleukin-12 (IL-12), vascular endothelial growth factor (VEGF), IL-α, and macrophage colony-stimulating factor (M-CSF) in cortex and increases in IL-4, IL-5, IL-10, and granulocyte colony-stimulating factor (G-CSF) in serum. IAIPs attenuated the reductions in ZO-1 and delayed increases in VCAM-1 and PGP in cortex and attenuated increases in cytokines in serum (IL-4, IL-5, IL-10, IFN-γ, G-CSF) and cortex (IL-1α, IL-12, IFN-γ, VEGF, M-CSF) after HI. We conclude that vascular endothelial proteins and cytokines exhibit sequential changes after HI and IAIPs modulate some of these HI-related changes in neonatal rats.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
- Present Address: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kevin V Nguyen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Richard Tucker
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yow-Pin Lim
- ProThera Biologics Inc, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Xiaodi Chen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Silva BRD, Lima JMFA, Echeverry MB, Alberto-Silva C. Haloperidol-Induced Catalepsy and Its Correlations with Acetylcholinesterase Activity in Different Brain Structures of Mice. Neurol Int 2024; 16:1731-1741. [PMID: 39728751 DOI: 10.3390/neurolint16060125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antipsychotic medicines are used to treat several psychological disorders and some symptoms caused by dementia and schizophrenia. Haloperidol (Hal) is a typical antipsychotic usually used to treat psychosis; however, its use causes motor or extrapyramidal symptoms (EPS) such as catalepsy. Hal blocks the function of presynaptic D2 receptors on cholinergic interneurons, leading to the release of acetylcholine (ACh), which is hydrolyzed by the enzyme acetylcholinesterase (AChE). METHODS This study was designed to investigate the Hal-inhibitory effects on AChE activity in regions representative of the cholinergic system of mice and potential associations between cataleptic effects generated by Hal using therapeutic doses and their inhibitory effects on AChE. RESULTS The distribution of the AChE activity in the different regions of the brain followed the order striatum > hippocampus > (prefrontal cortex/hypothalamus/ cerebellum) > brainstem > septo-hippocampal system. In ex vivo assays, Hal inhibited AChE activity obtained from homogenate tissue of the striatum, hippocampus, and septo-hippocampal system in a concentration-dependent manner. The inhibitory concentration of 50% of enzyme activity (IC50) indicated that the septo-hippocampal system required a higher concentration of Hal (IC50 = 202.5 µmol·L-1) to inhibit AChE activity compared to the striatum (IC50 = 162.5 µmol·L-1) and hippocampus (IC50 = 145 µmol·L-1). In in vivo assays, male Swiss mice treated with concentrations of Hal higher than 0.1 mg·kg-1 induced cataleptic effects. Positive correlations with Spearman's correlation were observed only between the lack of cataleptic effect and the decreased AChE activity of the hippocampus in the mice treated with 0.01 mg·kg-1 of Hal but not in the striatum and septo-hippocampal system. CONCLUSIONS Our results suggest that Hal could increase cholinergic effects via AChE inhibition, in addition to its dopamine antagonist effect, as an alternative approach to the treatment of behavioral disturbances associated with dementia.
Collapse
Affiliation(s)
- Brenda Rufino da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil
| | - Joyce Maria Ferreira Alexandre Lima
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil
| | - Marcela Bermudez Echeverry
- Center for Mathematics, Computation and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil
| | - Carlos Alberto-Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil
| |
Collapse
|
3
|
Lin S, Meng J, Li F, Yu H, Lin D, Lin S, Li M, Zhou H, Yang B. Ganoderma lucidum polysaccharide peptide alleviates hyperuricemia by regulating adenosine deaminase and urate transporters. Food Funct 2022; 13:12619-12631. [PMID: 36385640 DOI: 10.1039/d2fo02431d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hyperuricemia (HUA) affects human health and is involved in the pathogenesis of common chronic diseases. Previous studies showed that Ganoderma lucidum extract lowered HUA in animals. However, the active ingredient and pharmacological mechanism of Ganoderma lucidum extract in the improvement of HUA are unknown. The purpose of this study was to determine the anti-HUA efficacy and related mechanism of Ganoderma lucidum polysaccharide peptide (GLPP) using a potassium oxonate (PO)-induced mouse model and an adenosine-induced cell model. The experimental results showed that blood uric acid (UA) was decreased up to 40.6% by GLPP in HUA mice in a dose-dependent manner. Additionally, GLPP significantly reduced UA production by inhibiting the hepatic and blood adenosine deaminase (ADA) activity and increased UA excretion by decreasing the expression of glucose transporter 9 (GLUT9) and increasing the expression of organic anion transporter 1 (OAT1) in kidney. The adenosine-induced cell model showed that the inhibitory effect of GLPP on ADA activity may be the main reason for the alleviation of HUA by GLPP. Furthermore, PO-induced renal histopathological damage was also alleviated by GLPP in a dose-dependent manner. The experimental results in this study indicated that GLPP exerted anti-HUA effects via regulating the UA production and excretion, suggesting that GLPP could be developed into a therapeutic agent for HUA.
Collapse
Affiliation(s)
- Simei Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Jia Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Dongmei Lin
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuqian Lin
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| |
Collapse
|
4
|
Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA. Role of Copper in the Onset of Alzheimer's Disease Compared to Other Metals. Front Aging Neurosci 2018; 9:446. [PMID: 29472855 PMCID: PMC5810277 DOI: 10.3389/fnagi.2017.00446] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by amyloid plaques in patients' brain tissue. The plaques are mainly made of β-amyloid peptides and trace elements including Zn2+, Cu2+, and Fe2+. Some studies have shown that AD can be considered a type of metal dyshomeostasis. Among metal ions involved in plaques, numerous studies have focused on copper ions, which seem to be one of the main cationic elements in plaque formation. The involvement of copper in AD is controversial, as some studies show a copper deficiency in AD, and consequently a need to enhance copper levels, while other data point to copper overload and therefore a need to reduce copper levels. In this paper, the role of copper ions in AD and some contradictory reports are reviewed and discussed.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Thomas Haertlé
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- UR 1268 Biopolymères Interactions Assemblages, Institut National de la Recherche Agronomique, Equipe Fonctions et Interactions des Protéines, Nantes, France
- Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Poznań, Poland
| | | | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Lu HY, Wang W, Zhou Z, Liu CY, Liu Y, Xiao W, Dong FS, Wang J. Treatment of obstructive sleep apnoea–hypopnea syndrome by mandible advanced device reduced neuron apoptosis in frontal cortex of rabbits. Eur J Orthod 2017; 40:273-280. [DOI: 10.1093/ejo/cjx060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hai-yan Lu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Wen Wang
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Zheng Zhou
- Department of Periodontology, University of Detroit Mercy, Detroit, MI, USA
| | - Chun-yan Liu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Ye Liu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Wei Xiao
- Department of Stomatology, FengTai Hospital, Beijing, P.R. of China
| | - Fu-sheng Dong
- Department of Oral and Maxillofacial Surgery, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Jie Wang
- Department of Oral Pathology, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| |
Collapse
|
6
|
Odorcyk FK, Sanches EF, Nicola FC, Moraes J, Pettenuzzo LF, Kolling J, Siebert C, Longoni A, Konrath EL, Wyse A, Netto CA. Administration of Huperzia quadrifariata Extract, a Cholinesterase Inhibitory Alkaloid Mixture, has Neuroprotective Effects in a Rat Model of Cerebral Hypoxia–Ischemia. Neurochem Res 2016; 42:552-562. [DOI: 10.1007/s11064-016-2107-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/01/2023]
|
7
|
Shang Y, Mu L, Guo X, Li Y, Wang L, Yang W, Li S, Shen Q. Clinical significance of interleukin-6, tumor necrosis factor-α and high-sensitivity C-reactive protein in neonates with hypoxic-ischemic encephalopathy. Exp Ther Med 2014; 8:1259-1262. [PMID: 25187835 PMCID: PMC4151692 DOI: 10.3892/etm.2014.1869] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/15/2014] [Indexed: 01/18/2023] Open
Abstract
The present study aimed to investigate the potential roles of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and high-sensitivity C-reactive protein (Hs-CRP) in the progression and prognosis of neonatal hypoxic-ischemic encephalopathy (HIE). The observation group comprised 74 neonates with HIE and the control group comprised 74 healthy neonates. The serum levels of IL-6, TNF-α and Hs-CRP were measured in the patients with HIE and the normal control infants. The correlations between the variances in the levels of these inflammatory cytokines and the different clinical gradings and prognoses of the disease were analyzed. The data revealed significant upregulation of the serum levels of IL-6, TNF-α and Hs-CRP in patients with HIE. The increase in the levels of these inflammatory mediators correlated with the severity of the disease and also had a positive correlation with the prognosis of the disease. In conclusion, high levels of IL-6, TNF-α and Hs-CRP were observed in neonatal patients with HIE. Thus, these inflammatory mediators may play a role in the progression and prognosis of the disease.
Collapse
Affiliation(s)
- Yun Shang
- Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Lina Mu
- Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xixia Guo
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yuhua Li
- Department of Pediatric Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Limin Wang
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Weihong Yang
- Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Shujun Li
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Qiong Shen
- Department of Gynecology and Obstetrics, Hebei Armed Police Corps Hospital, Shijiazhuang, Hebei 050081, P.R. China
| |
Collapse
|
8
|
Cortés A, Gracia E, Moreno E, Mallol J, Lluís C, Canela EI, Casadó V. Moonlighting Adenosine Deaminase: A Target Protein for Drug Development. Med Res Rev 2014; 35:85-125. [DOI: 10.1002/med.21324] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Eduard Gracia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Estefania Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Carme Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Enric I. Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| |
Collapse
|