1
|
Di Marco B, Marchetti F, Costa S, Baldini E, Baldisserotto A, Gugel I, Vertuani S, Strettoi E, Manfredini S. Dual-action steroid derivatives with anti-inflammatory and antioxidant potency: An in vitro study. Biomed Pharmacother 2025; 186:117940. [PMID: 40117903 DOI: 10.1016/j.biopha.2025.117940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Abstract
In a recent study, we obtained two novel cortisone-derived molecules: 1,9β,17,21- tetrahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11,20-dione(SCA)and 1,9β,17,20β,21-pentahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11-one(SCB). These compounds showed a dual activity combining potent anti-inflammatory and antioxidant properties, suggesting their potential as therapeutic agents for conditions characterized by inflammation and oxidative stress, such as severe ocular disorders. In this study, in vitro experiments using human ARPE-19 and mouse 661 W cell lines, which model the retinal pigment epithelium and retinal photoreceptors respectively, revealed that pretreatment with SCA and SCB under oxidative stress with H2O2 preserved cell viability, reduced intracellular ROS levels, maintained tight junction integrity and Trans Epithelial Electrical Resistance (TEER). Moreover, both compounds enhanced mitochondrial respiration, thereby improving cellular bioenergetics. These results indicate that SCA and SCB could provide an effective alternative to traditional corticosteroids in treating complications in which oxidative stress and inflammation are combined, including diseases such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Preclinical studies on animal models and trials on human ocular diseases are necessary to validate these findings in vivo and explore their therapeutic potential.
Collapse
Affiliation(s)
- Beatrice Di Marco
- Institute of Neuroscience, Italian National Research Council, CNR, Via Giuseppe Moruzzi 1, Pisa 56124, Italy.
| | - Filippo Marchetti
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via L. Borsari 46, Ferrara I-44121, Italy.
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via L. Borsari 46, Ferrara I-44121, Italy; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, Ferrara I-44121, Italy.
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via L. Borsari 46, Ferrara I-44121, Italy.
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via L. Borsari 46, Ferrara I-44121, Italy.
| | - Irene Gugel
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via L. Borsari 46, Ferrara I-44121, Italy.
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via L. Borsari 46, Ferrara I-44121, Italy.
| | - Enrica Strettoi
- Institute of Neuroscience, Italian National Research Council, CNR, Via Giuseppe Moruzzi 1, Pisa 56124, Italy.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via L. Borsari 46, Ferrara I-44121, Italy.
| |
Collapse
|
2
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
3
|
Huang Z, Ji Y, Wang D, Guo N, Jin L, Zheng S, Liu Y, Shi H, Lin M, Zuo C. The Macular Pigment Optical Density (MPOD) Decrease in Chinese Primary Angle Closure Glaucoma Using the One-Wavelength Reflectometry Method. Curr Eye Res 2024; 49:1260-1268. [PMID: 39105271 DOI: 10.1080/02713683.2024.2381864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE The objective of this study was to observe the macular pigment optical density (MPOD) and the relationship between MPOD and retinal thickness in Chinese primary angle-closure glaucoma (PACG) patients by the one-wavelength reflectometry method. METHODS This study was a prospective comparative observational study, including 39 eyes from 39 PACG patients (15 men and 24 women, mean age 61.89 ± 12.30) and 41 eyes from 41 controls (20 men and 21 women, mean age 63.24 ± 14.02). We measured the MPOD 7-degree area by the one-wavelength reflectometry method and analyzed both the max and mean optical density (OD). The central retinal thickness (CRT) and the total thickness of the macular ganglion cell layer (GCL), and inner plexiform layer (IPL)were measured by spectral-domain-optical coherence tomography (SD-OCT). Statistical methods such as Shapiro-Wilk test, Fisher's exact test, chi-square test, two independent samples test and Spearman's correlation coefficient were used to observe the differences in the MPOD between normal subjects and PACG patients and the correlation between the MPOD and retinal thickness. RESULTS The max optical density (Max OD) (PACG group: 0.302 ± 0.067d.u, control group: 0.372 ± 0.059d.u., p < .001) and mean optical density (Mean OD) (PACG group: 0.124 ± 0.035d.u., control group: 0.141 ± 0.028d.u., p < 0.05) were significantly reduced in PACG patients compared with control subjects. Significant decreases in GCL + IPL thickness (PACG group: 74.71 ± 39.56 μm, control group:113.61 ± 8.14 μm, p < 0.001) and CRT (PACG group: 254.49 ± 41.47 μm, control group:329.10 ± 18.57 μm, p < 0.001) were also observed in PACG eyes. There was no statistically significant correlation between the MPOD and GCL + IPL thickness (p = .639, p = .828). CONCLUSIONS MPOD was significantly lower in Chinese PACG patients than in the control group, potentially due to thinning of the GCL + IPL thickness. This study provides insights for the pathophysiology, assessment of PACG and potential guidance for lifestyle modifications.
Collapse
Affiliation(s)
- Zhihong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuying Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ni Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ling Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shaoyang Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huanyang Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Zhuang GB, Li X, Wu SN, Zhang SQ, Zhang ZJ, Dong N. The impact of vitamin E, vitamin B6, and niacin intake on cataract incidence based on NHANES 2005-2008 data. Front Nutr 2024; 11:1406147. [PMID: 39183990 PMCID: PMC11342804 DOI: 10.3389/fnut.2024.1406147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Objective This investigation aims to elucidate the correlations between dietary intakes of vitamin E, B6, and niacin and the incidence of cataracts, utilizing the comprehensive NHANES 2005-2008 dataset to affirm the prophylactic roles of these nutrients against cataract formation. Methods Using data from the NHANES 2005-2008 cycles, this analysis concentrated on 7,247 subjects after exclusion based on incomplete dietary or cataract data. The identification of cataracts was determined through participants' self-reported ophthalmic surgical history. Nutritional intake was gauged using the automated multiple pass method, and the data were analyzed using logistic and quantile regression analyses to investigate the relationship between vitamin consumption and cataract prevalence. Results Our analysis identified significant inverse associations between the intake of vitamins E, B6, and niacin and the risk of cataract development. Specifically, higher intakes of vitamin B6 (OR = 0.85, 95% CI = 0.76-0.96, p = 0.0073) and niacin (OR = 0.98, 95% CI = 0.97-1.00, p = 0.0067) in the top quartile were significantly associated with a reduced likelihood of cataract occurrence. Vitamin E intake showed a consistent reduction in cataract risk across different intake levels (OR = 0.96, 95% CI = 0.94-0.99, p = 0.0087), demonstrating a nonlinear inverse correlation. Conclusion The outcomes indicate that elevated consumption of vitamin B6 and niacin, in conjunction with regular vitamin E intake, may have the potential to delay or prevent cataract genesis. These results suggest a novel nutritional strategy for cataract prevention and management, advocating that focused nutrient supplementation could be instrumental in preserving eye health and reducing the risk of cataracts. Further research is recommended to validate these findings and establish optimal dosages for maximum benefit.
Collapse
Affiliation(s)
- Guo-Bin Zhuang
- Department of Ophthalmology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Xiang Li
- Eye Institute and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, China
| | - Shi-Nan Wu
- Eye Institute and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Si-Qi Zhang
- Department of Oncology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhi-Jie Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Nuo Dong
- Eye Institute and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ocular Surface and Corneal Disease, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Affiliated People’s Hospital and Zhenjiang Kangfu Eye Hospital, Zhenjiang College, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Zhu J, Chen H, Wu J, Li S, Lin W, Wang N, Bai L. Ferroptosis in Glaucoma: A Promising Avenue for Therapy. Adv Biol (Weinh) 2024; 8:e2300530. [PMID: 38411382 DOI: 10.1002/adbi.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Glaucoma, a blind-leading disease largely since chronic pathological intraocular high pressure (ph-IOP). Hitherto, it is reckoned incurable for irreversible neural damage and challenges in managing IOP. Thus, it is significant to develop neuroprotective strategies. Ferroptosis, initially identified as an iron-dependent regulated death that triggers Fenton reactions and culminates in lipid peroxidation (LPO), has emerged as a focal point in multiple tumors and neurodegenerative diseases. Researches show that iron homeostasis play critical roles in the optic nerve (ON) and retinal ganglion cells (RGCs), suggesting targeted treatments could be effective. In glaucoma, apart from neural lesions, disrupted metal balance and increased oxidative stress in trabecular meshwork (TM) are observed. These disturbances lead to extracellular matrix excretion disorders, known as sclerotic mechanisms, resulting in refractory blockages. Importantly, oxidative stress, a significant downstream effect of ferroptosis, is also a key factor in cell senescence. It plays a crucial role in both the etiology and risk of glaucoma. Moreover, ferroptosis also induces non-infectious inflammation, which exacerbate glaucomatous injury. Therefore, the relevance of ferroptosis in glaucoma is extensive and multifaceted. In this review, the study delves into the current understanding of ferroptosis mechanisms in glaucoma, aiming to provide clues to inform clinical therapeutic practices.
Collapse
Affiliation(s)
- Jingyun Zhu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Hui Chen
- Department of Geriatrics, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, China
| | - Jian Wu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Sen Li
- Department of Spinal Surgery, Drum Tower Hospital, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu, 210008, China
| | - Wanying Lin
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Ningli Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
6
|
Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev 2023; 9:CD000254. [PMID: 37702300 PMCID: PMC10498493 DOI: 10.1002/14651858.cd000254.pub5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a degenerative condition of the back of the eye that occurs in people over the age of 50 years. Antioxidants may prevent cellular damage in the retina by reacting with free radicals that are produced in the process of light absorption. Higher dietary levels of antioxidant vitamins and minerals may reduce the risk of progression of AMD. This is the third update of the review. OBJECTIVES To assess the effects of antioxidant vitamin and mineral supplements on the progression of AMD in people with AMD. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, one other database, and three trials registers, most recently on 29 November 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared antioxidant vitamin or mineral supplementation to placebo or no intervention, in people with AMD. DATA COLLECTION AND ANALYSIS We used standard methods expected by Cochrane. MAIN RESULTS We included 26 studies conducted in the USA, Europe, China, and Australia. These studies enroled 11,952 people aged 65 to 75 years and included slightly more women (on average 56% women). We judged the studies that contributed data to the review to be at low or unclear risk of bias. Thirteen studies compared multivitamins with control in people with early and intermediate AMD. Most evidence came from the Age-Related Eye Disease Study (AREDS) in the USA. People taking antioxidant vitamins were less likely to progress to late AMD (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.58 to 0.90; 3 studies, 2445 participants; moderate-certainty evidence). In people with early AMD, who are at low risk of progression, this means there would be approximately four fewer cases of progression to late AMD for every 1000 people taking vitamins (one fewer to six fewer cases). In people with intermediate AMD at higher risk of progression, this corresponds to approximately 78 fewer cases of progression for every 1000 people taking vitamins (26 fewer to 126 fewer). AREDS also provided evidence of a lower risk of progression for both neovascular AMD (OR 0.62, 95% CI 0.47 to 0.82; moderate-certainty evidence) and geographic atrophy (OR 0.75, 95% CI 0.51 to 1.10; moderate-certainty evidence), and a lower risk of losing 3 or more lines of visual acuity (OR 0.77, 95% CI 0.62 to 0.96; moderate-certainty evidence). Low-certainty evidence from one study of 110 people suggested higher quality of life scores (measured with the Visual Function Questionnaire) in treated compared with non-treated people after 24 months (mean difference (MD) 12.30, 95% CI 4.24 to 20.36). In exploratory subgroup analyses in the follow-on study to AREDS (AREDS2), replacing beta-carotene with lutein/zeaxanthin gave hazard ratios (HR) of 0.82 (95% CI 0.69 to 0.96), 0.78 (95% CI 0.64 to 0.94), 0.94 (95% CI 0.70 to 1.26), and 0.88 (95% CI 0.75 to 1.03) for progression to late AMD, neovascular AMD, geographic atrophy, and vision loss, respectively. Six studies compared lutein (with or without zeaxanthin) with placebo and one study compared a multivitamin including lutein/zeaxanthin with multivitamin alone. The duration of supplementation and follow-up ranged from six months to five years. Most evidence came from the AREDS2 study in the USA; almost all participants in AREDS2 also took the original AREDS supplementation formula. People taking lutein/zeaxanthin may have similar or slightly reduced risk of progression to late AMD (RR 0.94, 95% CI 0.87 to 1.01), neovascular AMD (RR 0.92, 95% CI 0.84 to 1.02), and geographic atrophy (RR 0.92, 95% CI 0.80 to 1.05) compared with control (1 study, 4176 participants, 6891 eyes; low-certainty evidence). A similar risk of progression to visual loss of 15 or more letters was seen in the lutein/zeaxanthin and control groups (RR 0.98, 95% CI 0.91 to 1.05; 6656 eyes; low-certainty evidence). Quality of life (Visual Function Questionnaire) was similar between groups (MD 1.21, 95% CI -2.59 to 5.01; 2 studies, 308 participants; moderate-certainty evidence). One study in Australia randomised 1204 people to vitamin E or placebo with four years of follow-up; 19% of participants had AMD. The number of late AMD events was low (N = 7) and the estimate of effect was uncertain (RR 1.36, 95% CI 0.31 to 6.05; very low-certainty evidence). There was no evidence of any effect of treatment on visual loss (RR 1.04, 95% CI 0.74 to 1.47; low-certainty evidence). There were no data on neovascular AMD, geographic atrophy, or quality of life. Five studies compared zinc with placebo. Evidence largely drawn from the largest study (AREDS) found a lower progression to late AMD over six years (OR 0.83, 95% CI 0.70 to 0.98; 3 studies, 3790 participants; moderate-certainty evidence), neovascular AMD (OR 0.76, 95% CI 0.62 to 0.93; moderate-certainty evidence), geographic atrophy (OR 0.84, 95% CI 0.64 to 1.10; moderate-certainty evidence), or visual loss (OR 0.87, 95% CI 0.75 to 1.00; 2 studies, 3791 participants; moderate-certainty evidence). There were no data on quality of life. Gastrointestinal symptoms were the main reported adverse effect. In AREDS, zinc was associated with a higher risk of genitourinary problems in men, but no difference was seen between high- and low-dose zinc groups in AREDS2. Most studies were too small to detect rare adverse effects. Data from larger studies (AREDS/AREDS2) suggested there may be little or no effect on mortality with multivitamin (HR 0.87, 95% CI 0.60 to 1.25; low-certainty evidence) or lutein/zeaxanthin supplementation (HR 1.06, 95% CI 0.87 to 1.31; very low-certainty evidence), but confirmed the increased risk of lung cancer with beta-carotene, mostly in former smokers. AUTHORS' CONCLUSIONS Moderate-certainty evidence suggests that antioxidant vitamin and mineral supplementation (AREDS: vitamin C, E, beta-carotene, and zinc) probably slows down progression to late AMD. People with intermediate AMD have a higher chance of benefiting from antioxidant supplements because their risk of progression is higher than people with early AMD. Although low-certainty evidence suggested little effect with lutein/zeaxanthin alone compared with placebo, exploratory subgroup analyses from one large American study support the view that lutein/zeaxanthin may be a suitable replacement for the beta-carotene used in the original AREDS formula.
Collapse
Affiliation(s)
- Jennifer R Evans
- Centre for Public Health, International Centre for Eye Health, London School of Hygiene & Tropical Medicine, Belfast, UK
| | - John G Lawrenson
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| |
Collapse
|
7
|
Chen Z, Yu L, Li W, Zhang H, Huang X, Chen W, Wang D. Association of vitamins with hearing loss, vision disorder and sleep problem in the US general population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53876-53886. [PMID: 36867331 DOI: 10.1007/s11356-023-26164-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Based on nationally representative samples from US, we aimed to assess the associations of vitamins with hearing loss, vision disorder and sleep problem. A total of 25,312, 8425 and 24,234 participants were included in this study to investigate the relationship of vitamins with hearing loss, vision disorder and sleep problem from National Health and Nutrition Examination Survey, respectively. Vitamins including niacin, folic acid, vitamin B6, A, C, E and carotenoids were considered in our study. Logistic regression models were used to assess the associations between all included dietary vitamin intake concentrations and the prevalence of specific outcomes. Increased lycopene (odds ratio [OR]: 0.904, 95% confidence interval [CI]: 0.829-0.985) intake was associated with a deceased prevalence of hearing loss. Higher dietary intake of folic acid (OR: 0.637, 95% CI: 0.443-0.904), vitamin B6 (0.667, 0.465-0.947), alpha-carotene (0.695, 0.494-0.968), beta-carotene (0.703, 0.505-0.969) and lutein + zeaxanthin (0.640, 0.455-0.892) were associated with a decreased prevalence of vision disorder. The inversely associations of sleeping problem with niacin (OR: 0.902, 95% CI: 0.826-0.985), folic acid (0.882, 0.811-0.959), vitamin B6 (0.892, 0.818-0.973), vitamin C (0.908, 0.835-0.987), vitamin E (0.885, 0.813-0.963) and lycopene (0.919, 0.845-0.998) were also observed. Our findings provide evidence that increased specific vitamin intake is associated with decreased prevalence of hearing loss, vision disorder and sleep problem.
Collapse
Affiliation(s)
- Zhaomin Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenzhen Li
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Haozhe Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xuezan Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Tanito M, Takayanagi Y, Ishida A, Ichioka S, Takai Y, Kaidzu S. Linear association between aging and decreased blood thiol antioxidant activity in patients with cataract. J Clin Biochem Nutr 2023; 72:54-60. [PMID: 36777073 PMCID: PMC9899924 DOI: 10.3164/jcbn.22-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/03/2022] [Indexed: 11/07/2022] Open
Abstract
We comprehensively assessed the roles of systemic redox markers by including both prooxidant and antioxidant markers in 121 Japanese subjects (mean ± SD age, 70 ± 11 years; 38 men) with no ocular pathology except age-related cataract. Serum levels of lipid peroxides, ferric-reducing activity, and thiol antioxidant activity were measured using the diacron reactive oxygen metabolite (dROM), biologic antioxidant potential (BAP), and sulfhydryl (SH) tests, respectively, using a free-radical analyzer. Univariate analyses suggested that older age, higher pulse rate, worse best-corrected visual acuity (BCVA), higher intraocular pressure, and higher cataract grade were associated with a lower SH level. Scatterplots revealed virtually linear associations between age and the SH level (estimate, -4.4 μM/year). Multivariate analyses suggested that older age, higher systolic blood pressure, and worse BCVA were associated with a lower SH level. Neither the univariate nor multivariate analyses, except between female sex and higher dROM level, were associated with the dROM or BAP level. A lower serum SH level was the driver of aging itself and age-related decline in VA due to cataract. The serum SH level may be an excellent predictor of aging status in each subject.
Collapse
Affiliation(s)
- Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan,To whom correspondence should be addressed. E-mail:
| | - Yuji Takayanagi
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan,Department of Ophthalmology, Seirei Hamamatsu General Hospital, 2-12-12 Naka-ku Sumiyoshi, Hamamatsu, Shizuoka 430-8558, Japan
| | - Akiko Ishida
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Sho Ichioka
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Yasuyuki Takai
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan,Department of Ophthalmology, Masuda Red Cross Hospital, I103-1 Otoyoshi, Masuda, Shimane 698-8501, Japan
| | - Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
9
|
Ghezzi M, Ferraboschi I, Delledonne A, Pescina S, Padula C, Santi P, Sissa C, Terenziani F, Nicoli S. Cyclosporine-loaded micelles for ocular delivery: Investigating the penetration mechanisms. J Control Release 2022; 349:744-755. [PMID: 35901859 DOI: 10.1016/j.jconrel.2022.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Cyclosporine is an immunomodulatory drug commonly used for the treatment of mild-to-severe dry eye syndrome as well as intermediate and posterior segment diseases as uveitis. The ocular administration is however hampered by its relatively high molecular weight and poor permeability across biological barriers. The aim of this work was to identify a micellar formulation with the ability to solubilize a considerable amount of cyclosporine and promote its transport across ocular barriers. Non-ionic amphiphilic polymers used for micelles preparation were tocopherol polyethylene glycol 1000 succinate (TPGS) and Solutol® HS15. Furthermore, the addition of alpha-linolenic acid was assessed. A second aim was to evaluate micelles fate in the ocular tissues (cornea and sclera) to shed light on penetration mechanisms. This was possible by extracting and quantifying both drug and polymer in the tissues, by studying TPGS hydrolysis in a bio-relevant environment and by following micelles penetration with two-photon microscopy. Furthermore, TPGS role as permeation enhancer on the cornea, with possible irreversible modifications of tissue permeability, was analyzed. Results showed that TPGS micelles (approx. 13 nm in size), loaded with 5 mg/ml of cyclosporine, promoted drug retention in both the cornea and the sclera. Data demonstrated that micelles behavior strictly depends on the tissue: micelles disruption occurs in contact with the cornea, while intact micelles diffuse in the interfibrillar pores of the sclera and form a reservoir that can sustain over time drug delivery to the deeper tissues. Finally, cornea quickly restore the barrier properties after TPGS removal from the tissue, demonstrating its potential good tolerability for ocular application.
Collapse
Affiliation(s)
- Martina Ghezzi
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ilaria Ferraboschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea Delledonne
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Padula
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Patrizia Santi
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Francesca Terenziani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Sara Nicoli
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
10
|
Tanito M. Reported evidence of vitamin E protection against cataract and glaucoma. Free Radic Biol Med 2021; 177:100-119. [PMID: 34695546 DOI: 10.1016/j.freeradbiomed.2021.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/25/2022]
Abstract
Cataract and glaucoma are the major causes of severe visual loss and blindness in older adults. This review article describes the currently available basic and clinical evidence regarding vitamin E protection against these eye diseases in the chronologic order of the publications. Experimental evidence has suggested both that oxidative stress due to the accumulation of free radicals plays a role in the pathogenesis of cataracts and glaucoma and that the process can be prevented or ameliorated by vitamin E. The results of observational studies have been inconsistent regarding the association between blood vitamin E levels and the risk of age-related cataract or glaucoma. Despite the encouraging effects of vitamin E from case series, case-control studies, and cross-sectional studies in humans, the effects on cataract formation and/or progression have not been consistent among prospective and randomized control studies; few randomized control studies have tested the effects of supplemental vitamin E on glaucoma development or progression. Given the high prevalence of cataract and glaucoma in the elderly population, even a modest reduction in the risk for these eye diseases would potentially have a substantial public health impact; however, the potential benefits of vitamin E on cataract or glaucoma remain inconclusive and need to be carefully considered.
Collapse
Affiliation(s)
- Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane, 693-8501, Japan.
| |
Collapse
|
11
|
Heidari N, Nabie R, Jabbari M, Irannejad Niri Z, Zeinalian R, Asghari Jafarabadi M, Arefhosseini SR. The association between food diversity and serum antioxidant indices in cataract patients compared to healthy subjects. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:59. [PMID: 34729067 PMCID: PMC8506238 DOI: 10.4103/jrms.jrms_321_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Accepted: 03/08/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Cataract is a chronic disorder that is related to antioxidant-oxidant imbalance situation. We aimed to investigate the association between food diversity and serum antioxidant and oxidant indices in cataract patients compared to healthy subjects. MATERIALS AND METHODS In this case-control study, ninety volunteers (aged > 50 years) were divided into the cataract (n = 45) and healthy control (n = 45) groups. Anthropometric variables, physical activity and stress levels, food diversity score, serum total oxidant capacity (TOC), and total antioxidant capacity (TAC) measurements were done for all participants. RESULTS Serum TAC, even after adjustment for stress level, was significantly higher in healthy people compared to cataract patients (P < 0.001). In addition, serum TOC was significantly lower in healthy controls compared to cataract patients (P < 0.002). In healthy group, there was a weak significant positive association between serum TAC and meats group diversity (r = 0.149, P = 0.047). In addition, there was a moderate negative association between meats group diversity and TOC in the healthy controls (r = -0.712, P = 0.041). In the cataract group, there was a significant negative association between serum TOC and diversity score of fruits (r = -0.811, P = 0.017) and meats group (r = -0.926, P = 0.046) as well as total score of food diversity (r = -0.466, P = 0.003). CONCLUSION It seems that increase in total dietary diversity and food groups' diversity can have a beneficial effect on oxidant situation among cataract patients.
Collapse
Affiliation(s)
- Naeimeh Heidari
- Department of Biochemistry, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Nabie
- Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Jabbari
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Industry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Irannejad Niri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Reihaneh Zeinalian
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seyed Rafie Arefhosseini
- Department of Biochemistry, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
|
13
|
Abstract
Glaucoma is the leading cause of irreversible blindness in the world. Intraocular pressure (IOP) is currently the only proven modifiable risk factor for POAG. IOP-independent mechanisms contributing to the development of glaucomatous neurodegeneration include oxidative stress, excitotoxicity, mitochondrial dysfunction, and impaired ocular blood flow. In this regard, there has recently been growing interest in the use of various antioxidant dietary supplements as neuroprotective therapy for glaucoma. The issue of the effectiveness and safety of these biologically active additives is an urgent scientific problem reflected in numerous studies. This article reviews current concepts of oxidative/nitrosative stress, the role of reactive oxygen species (ROS)/reactive nitrogen (Nr) and their participation in the development of POAG, as well as experimental models and clinical studies using essential fatty acids, natural compounds and a number of other antioxidant substances that can counteract oxidative stress in glaucoma.
Collapse
Affiliation(s)
| | - A D Poluianova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
14
|
Update on the Effects of Antioxidants on Diabetic Retinopathy: In Vitro Experiments, Animal Studies and Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9060561. [PMID: 32604941 PMCID: PMC7346101 DOI: 10.3390/antiox9060561] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Current therapies for diabetic retinopathy (DR) incorporate blood glucose and blood pressure control, vitrectomy, photocoagulation, and intravitreal injections of anti-vascular endothelial growth factors or corticosteroids. Nonetheless, these techniques have not been demonstrated to completely stop the evolution of this disorder. The pathophysiology of DR is not fully known, but there is more and more evidence indicating that oxidative stress is an important mechanism in the progression of DR. In this sense, antioxidants have been suggested as a possible therapy to reduce the complications of DR. In this review we aim to assemble updated information in relation to in vitro experiments, animal studies and clinical trials dealing with the effect of the antioxidants on DR.
Collapse
|
15
|
Xu L, Yu H, Sun H, Yu X, Tao Y. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: in vivo and ex vivo evaluations. Drug Deliv 2020; 26:1222-1234. [PMID: 31747793 PMCID: PMC6882443 DOI: 10.1080/10717544.2019.1682718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin (AST) is a naturally occurring carotenoid with potent anti-oxidative and anti-inflammatory potency against chronic diseases. In this study, we suspended AST in different nonionic emulsifiers to produce nanodispersions. The basic physicochemical properties of the produced AST nanodispersions were verified to select the optimized nonionic emulsifier. Among the tested emulsifiers, Polysorbate 20 produced the AST nanoemulsions with smaller particle diameters, narrower size distributions, and higher AST contents among these emulsifiers. The N-methyl-N-nitrosourea (MNU) administered mouse is a chemically induced retinal degeneration (RD) model with rapid progress rate. AST suspended in Polysorbate 20 was demonstrated to ameliorate the dramatic consequences of MNU on retina architectures and function in several different tests encompassing from electrophysiology to histology and molecular tests. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells within the inner retinal circuits. We found that AST nanodispersions could restrain the spontaneous firing response, enhance the light induced firing response, and preserve the basic configurations of visual signal pathway in degenerative retinas. The MEA assay provided an appropriate example to evaluate the potency of pharmacological compounds on retinal plasticity. In summary, emulsifier type affects the basic physicochemical characteristic of AST nanodispersions. Polysorbate 20 acts as an optimized nonionic emulsifier for the efficient delivery of AST nanodispersions to retina. AST nanodispersions can alleviate the photoreceptor loss and rectify the abnormities in visual signal transmission.
Collapse
Affiliation(s)
- Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongbin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiang Yu
- Department of Otorhinolaryngology, Jinling Hospital, Clinical Hospital of Medical College, Nanjing University, Nanjing, China
| | - Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Ahmad A, Ahsan H. Biomarkers of inflammation and oxidative stress in ophthalmic disorders. J Immunoassay Immunochem 2020; 41:257-271. [PMID: 32046582 DOI: 10.1080/15321819.2020.1726774] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The review article focuses on free radicals and oxidative stress involved in ophthalmological diseases such as retinopathy, cataract, glaucoma, etc. Oxidative stress is considered as a key factor involved in the pathology of many chronic diseases including ophthalmic complication and inflammatory process. Oxidative stress and inflammation are closely related pathophysiological processes and are simultaneously found in many pathological conditions. The free radicals produced oxidize cellular components such as lipids and phospholipids leading to lipid peroxidation and trigger the onset of retinopathy. Cataract is a significant cause of visual disability and it is proposed that the high incidence is related to oxidative stress induced by continued intraocular penetration of light and consequent photochemical generation of free radical oxidants. Glaucoma is the leading cause of irreversible blindness and comprises a group of diseases characterized by progressive optic nerve degeneration. Oxidative injury and altered antioxidant defense mechanisms in glaucoma appear to play a role in the pathophysiology of glaucomatous neurodegeneration that is characterized by death of retinal ganglion cells. The UVB radiations through this way may cause a number of diseases like photo-keratitis, pterygium, damage to epithelium, edema, and corneal cell apoptosis.Abbreviations: ROS: reactive oxygen species; RNS: reactive nitrogen species; O2.: superoxide anion; H2O2: hydrogen peroxide;. OH: hydroxyl radicals; ONOO-, ONO2-: peroxynitrite; NO: nitric oxide; IOP: intraocular pressure; RGC: retinal ganglion cells. WHO: World Health Organization; IAPB: International Agency for the Prevention of Blindness.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Faculty of Dentistry, Department of Biochemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
17
|
Qi L, Zhou Y, Li W, Zheng M, Zhong R, Jin X, Lin Y. Effect of Moringa oleifera stem extract on hydrogen peroxide-induced opacity of cultured mouse lens. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:144. [PMID: 31226981 PMCID: PMC6588927 DOI: 10.1186/s12906-019-2555-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Moringa oleifera, also known as horseradish tree or drumstick tree, has strong antioxidant properties. In the present study, we investigated the potential effect of Moringa oleifera stem extract (MOSE) on cataract formation induced by oxidative stress in cultured mouse lenses. METHODS Mouse lenses cultured in vitro were pretreated with MOSE (0.5 and 1 mg/mL) for 24 h. Then, 1 mM hydrogen peroxide was added, and mouse lenses were cultured for a further 24 h. The medium was then changed to normal culture medium. After 48 h, lens opacification, reactive oxygen species (ROS) generation, reduced glutathione (GSH) content, and activities of superoxide dismutase (SOD) and catalase (CAT) were measured in lens tissues. In addition, the protein expression of peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor with potential benefits to improve vision-threatening eye diseases, was assayed. RESULTS MOSE (1 mg/mL) alleviated lens opacification, reduced ROS generation, increased GSH content, and elevated SOD and CAT activities in cultured lenses. Moreover, MOSE upregulated the expressions of SOD, CAT, and PPARα. CONCLUSIONS This study showed that MOSE alleviates oxidative stress-induced cataract formation, and the mechanism of the effect is mainly related to its improvement of the endogenous antioxidant system in the lens.
Collapse
Affiliation(s)
- Lei Qi
- Department of Ophthalmology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361005 People’s Republic of China
| | - Yu Zhou
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Weijie Li
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Mali Zheng
- Department of Ophthalmology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361005 People’s Republic of China
| | - Ruisheng Zhong
- Department of Ophthalmology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361005 People’s Republic of China
| | - Xin Jin
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Yuan Lin
- Department of Ophthalmology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361005 People’s Republic of China
| |
Collapse
|
18
|
Dietary Antioxidants, Macular Pigment, and Glaucomatous Neurodegeneration: A Review of the Evidence. Nutrients 2019; 11:nu11051002. [PMID: 31052471 PMCID: PMC6567242 DOI: 10.3390/nu11051002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide, and the prevalence is projected to increase to 112 million worldwide by 2040. Intraocular pressure is currently the only proven modifiable risk factor to treat POAG, but recent evidence suggests a link between antioxidant levels and risk for prevalent glaucoma. Studies have found that antioxidant levels are lower in the serum and aqueous humor of glaucoma patients. In this review, we provide a brief overview of the evidence linking oxidative stress to glaucomatous pathology, followed by an in-depth discussion of epidemiological studies and clinical trials of antioxidant consumption and glaucomatous visual field loss. Lastly, we highlight a possible role for antioxidant carotenoids lutein and zeaxanthin, which accumulate in the retina to form macular pigment, as evidence has emerged supporting an association between macular pigment levels and age-related eye disease, including glaucoma. We conclude that the evidence base is inconsistent in showing causal links between dietary antioxidants and glaucoma risk, and that prospective studies are needed to further investigate the possible relationship between macular pigment levels and glaucoma risk specifically.
Collapse
|
19
|
Yang Q, Li Y, Luo L. Effect of Myricetin on Primary Open-angle Glaucoma. Transl Neurosci 2018; 9:132-141. [PMID: 30473883 PMCID: PMC6234474 DOI: 10.1515/tnsci-2018-0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/28/2018] [Indexed: 01/04/2023] Open
Abstract
Background Primary open angle glaucoma (POAG) is the most common form of glaucoma, with a multifactorial etiology that results in retinal ganglion cell death and loss of vision. In this study, we assessed the effects of myricetin on the trabecular meshwork cells in POAG. Methods In the in-vivo model, glaucoma was induced in Sprague-Dawley rats by injecting hyaluronic acid into the anterior chamber of the eye (every week for six-weeks). Treatment group rats were administered myricetin (25, 50 or 100 mg/ kg body weight via oral gavage) each day for of six weeks. Results POAG TM cells exposed to myricetin (25, 50 or 100 μM) exhibited significantly lowered reactive oxidative species (ROS) levels and lipid peroxidation products. The expressions of transforming growth factors (TGFβ1/β2), vascular endothelial growth factor, and senescence markers (senescence associated-β-galactosidase, cyclin-dependent kinase inhibitors-p16 and p21) were substantially down-regulated in POAG TM cells exposed to myricetin. Myricetin effectively prevented IOP elevation in glaucoma-induced rats and decreased inflammatory cytokines (IL-1α, IL-1β, IL-6, Il-8, TNF-α) in the aqueous humor and POAG TM cells of glaucoma-induced rats. Conclusion The observations of the study illustrate the protective effects of myricetin in glaucomatous TM cells.
Collapse
Affiliation(s)
- Qing Yang
- Department of Ophthalmology, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Ying Li
- Department of Ophthalmology, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Lin Luo
- Department of Ophthalmology, Qingdao Municipal Hospital, Qingdao 266011, China
| |
Collapse
|
20
|
Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, Nicoli S. Poloxamer 407/TPGS Mixed Micelles as Promising Carriers for Cyclosporine Ocular Delivery. Mol Pharm 2018; 15:571-584. [DOI: 10.1021/acs.molpharmaceut.7b00939] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Silvia Pescina
- Food
and Drug Department, University of Parma, 43124 Parma, Italy
| | - Cristina Padula
- Food
and Drug Department, University of Parma, 43124 Parma, Italy
| | - Patrizia Santi
- Food
and Drug Department, University of Parma, 43124 Parma, Italy
| | - Angel Concheiro
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research
Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research
Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Sara Nicoli
- Food
and Drug Department, University of Parma, 43124 Parma, Italy
| |
Collapse
|
21
|
Pinazo-Durán MD, Shoaie-Nia K, Zanón-Moreno V, Sanz-González SM, Benítez del Castillo J, García-Medina JJ. Strategies to Reduce Oxidative Stress in Glaucoma Patients. Curr Neuropharmacol 2018; 16:903-918. [PMID: 28677495 PMCID: PMC6120109 DOI: 10.2174/1570159x15666170705101910] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/17/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Primary open-angle glaucoma (POAG) is a multifactorial pathology involving a variety of pathogenic mechanisms, including oxidative/nitrosative stress. This latter is the consequence of the imbalance between excessive formation and insufficient protection against reactive oxygen/nitrogen species. OBJECTIVE Our main goal is to gather molecular information to better managing pathologic variants that may determine the individual susceptibility to oxidative/nitrosative stress (OS/NS) and POAG. METHOD An extensive search of the scientific literature was conducted using PUBMED, the Web of Science, the Cochrane Library, and other references on the topic of POAG and OS/NS from human and animal model studies published between 2010 and 2017. Finally, 152 works containing relevant information that may help understanding the role of antioxidants, essential fatty acids, natural compounds and other similar strategies for counteracting OS/NS in POAG were considered. RESULTS A wide variety of studies have proven that antioxidants, among them vitamins B3, C and E, Coenzyme Q10 or melatonin, ω-3/ω-6 fatty acids and other natural compounds (such as coffee, green tea, bear bile, gingko biloba, coleus, tropical fruits, etc.,) may help regulating the intraocular pressure as well as protecting the retinal neurons against OS/NS in POAG. CONCLUSION Based on the impact of antioxidants and ω-3/ω-6 fatty acids at the molecular level in the glaucomatous anterior and posterior eye segments, further studies are needed by integrating all issues involved in glaucoma pathogenesis, endogenous and exogenous risk factors and their interactions that will allow us to reach newer effective biotherapies for preventing glaucomatous irreversible blindness.
Collapse
Affiliation(s)
- Maria D. Pinazo-Durán
- Address correspondence to this author at the Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, University Hospital Dr. Peset. Ave/ Gaspar Aguilar 90; 46017, Valencia, Spain; Tel: + 34 961622497;, Fax: + 34 961622748; E-mail:
| | | | | | | | | | | |
Collapse
|
22
|
Moschos MM, Laios K, Androudi S, Ladas DS, Chatziralli IP. Anti-platelet effects of vitamin supplements in age-related macular degeneration: an in vitro study. Cutan Ocul Toxicol 2017; 37:207-209. [PMID: 29171298 DOI: 10.1080/15569527.2017.1409754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The purpose of this experimental study was to investigate the role of vitamin supplements (Ocuvite, Vitalux Omega, and Nutrof Total) as possible inhibitors of the onset of age-related macular degeneration (AMD). MATERIALS AND METHODS The anti-aggregating effect of each vitamin was determined against four accumulative factors namely, platelet activating factor (PAF), adenosine diphosphate (ADP), thrombin receptor-activating peptide (TRAP), and arachidonic acid (AA) in the platelet rich plasma (PRP) of healthy volunteers. RESULTS Ocuvite, Vitalux Omega, and Nutrof Total were more potent inhibitors against PAF and ADP compared to TRAP and AA. Among the three vitamins, Nutrof Total displayed more potent inhibitions against TRAP and AA, while against PAF and ADP all the three vitamins revealed similar IC50 values. CONCLUSIONS The vitamins Ocuvite, Vitalux Omega, and Nutrof Total have anti-aggregating effects and therefore can be used against AMD in healthy volunteers.
Collapse
Affiliation(s)
- Marilita M Moschos
- a Laboratory of Electrophysiology, 1st Department of Ophthalmology , University of Athens , Athens , Greece
| | - Konstantinos Laios
- a Laboratory of Electrophysiology, 1st Department of Ophthalmology , University of Athens , Athens , Greece
| | - Sofia Androudi
- b Department of Ophthalmology , University of Thessaly , Larissa , Greece
| | - Dimitrios S Ladas
- a Laboratory of Electrophysiology, 1st Department of Ophthalmology , University of Athens , Athens , Greece
| | - Irini P Chatziralli
- a Laboratory of Electrophysiology, 1st Department of Ophthalmology , University of Athens , Athens , Greece
| |
Collapse
|
23
|
Neumayer T, Hirnschall N, Georgopoulos M, Findl O. Natural course of posterior subcapsular cataract over a short time period. Curr Eye Res 2017; 42:1604-1607. [DOI: 10.1080/02713683.2017.1343852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thomas Neumayer
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Nino Hirnschall
- VIROS – Vienna Institute for Research in Ocular Surgery, A Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria
| | | | - Oliver Findl
- VIROS – Vienna Institute for Research in Ocular Surgery, A Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Evans JR, Lawrenson JG, Cochrane Eyes and Vision Group. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev 2017; 7:CD000254. [PMID: 28756618 PMCID: PMC6483465 DOI: 10.1002/14651858.cd000254.pub4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND It has been proposed that antioxidants may prevent cellular damage in the retina by reacting with free radicals that are produced in the process of light absorption. Higher dietary levels of antioxidant vitamins and minerals may reduce the risk of progression of age-related macular degeneration (AMD). OBJECTIVES The objective of this review was to assess the effects of antioxidant vitamin or mineral supplementation on the progression of AMD in people with AMD. SEARCH METHODS We searched CENTRAL (2017, Issue 2), MEDLINE Ovid (1946 to March 2017), Embase Ovid (1947 to March 2017), AMED (1985 to March 2017), OpenGrey (System for Information on Grey Literature in Europe, the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 29 March 2017. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared antioxidant vitamin or mineral supplementation (alone or in combination) to placebo or no intervention, in people with AMD. DATA COLLECTION AND ANALYSIS Both review authors independently assessed risk of bias in the included studies and extracted data. One author entered data into RevMan 5; the other author checked the data entry. We graded the certainty of the evidence using GRADE. MAIN RESULTS We included 19 studies conducted in USA, Europe, China, and Australia. We judged the trials that contributed data to the review to be at low or unclear risk of bias.Nine studies compared multivitamins with placebo (7 studies) or no treatment (2 studies) in people with early and moderate AMD. The duration of supplementation and follow-up ranged from nine months to six years; one trial followed up beyond two years. Most evidence came from the Age-Related Eye Disease Study (AREDS) in the USA. People taking antioxidant vitamins were less likely to progress to late AMD (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.58 to 0.90; 2445 participants; 3 RCTs; moderate-certainty evidence). In people with very early signs of AMD, who are at low risk of progression, this would mean that there would be approximately 4 fewer cases of progression to late AMD for every 1000 people taking vitamins (1 fewer to 6 fewer cases). In people at high risk of progression (i.e. people with moderate AMD) this would correspond to approximately 8 fewer cases of progression for every 100 people taking vitamins (3 fewer to 13 fewer). In one study of 1206 people, there was a lower risk of progression for both neovascular AMD (OR 0.62, 95% CI 0.47 to 0.82; moderate-certainty evidence) and geographic atrophy (OR 0.75, 95% CI 0.51 to 1.10; moderate-certainty evidence) and a lower risk of losing 3 or more lines of visual acuity (OR 0.77, 95% CI 0.62 to 0.96; 1791 participants; moderate-certainty evidence). Low-certainty evidence from one study of 110 people suggested higher quality of life scores (National Eye Institute Visual Function Questionnaire) in treated compared with the non-treated people after 24 months (mean difference (MD) 12.30, 95% CI 4.24 to 20.36). Six studies compared lutein (with or without zeaxanthin) with placebo. The duration of supplementation and follow-up ranged from six months to five years. Most evidence came from the AREDS2 study in the USA. People taking lutein or zeaxanthin may have similar or slightly reduced risk of progression to late AMD (RR 0.94, 95% CI 0.87 to 1.01; 6891 eyes; low-certainty evidence), neovascular AMD (RR 0.92, 95% CI 0.84 to 1.02; 6891 eyes; low-certainty evidence), and geographic atrophy (RR 0.92, 95% CI 0.80 to 1.05; 6891 eyes; low-certainty evidence). A similar risk of progression to visual loss of 15 or more letters was seen in the lutein and control groups (RR 0.98, 95% CI 0.91 to 1.05; 6656 eyes; low-certainty evidence). Quality of life (measured with Visual Function Questionnaire) was similar between groups in one study of 108 participants (MD 1.48, 95% -5.53 to 8.49, moderate-certainty evidence). One study, conducted in Australia, compared vitamin E with placebo. This study randomised 1204 people to vitamin E or placebo, and followed up for four years. Participants were enrolled from the general population; 19% had AMD. The number of late AMD events was low (N = 7) and the estimate of effect was uncertain (RR 1.36, 95% CI 0.31 to 6.05, very low-certainty evidence). There were no data on neovascular AMD or geographic atrophy.There was no evidence of any effect of treatment on visual loss (RR 1.04, 95% CI 0.74 to 1.47, low-certainty evidence). There were no data on quality of life. Five studies compared zinc with placebo. The duration of supplementation and follow-up ranged from six months to seven years. People taking zinc supplements may be less likely to progress to late AMD (OR 0.83, 95% CI 0.70 to 0.98; 3790 participants; 3 RCTs; low-certainty evidence), neovascular AMD (OR 0.76, 95% CI 0.62 to 0.93; 2442 participants; 1 RCT; moderate-certainty evidence), geographic atrophy (OR 0.84, 95% CI 0.64 to 1.10; 2442 participants; 1 RCT; moderate-certainty evidence), or visual loss (OR 0.87, 95% CI 0.75 to 1.00; 3791 participants; 2 RCTs; moderate-certainty evidence). There were no data reported on quality of life.Very low-certainty evidence was available on adverse effects because the included studies were underpowered and adverse effects inconsistently reported. AUTHORS' CONCLUSIONS People with AMD may experience some delay in progression of the disease with multivitamin antioxidant vitamin and mineral supplementation. This finding was largely drawn from one large trial, conducted in a relatively well-nourished American population. We do not know the generalisability of these findings to other populations. Although generally regarded as safe, vitamin supplements may have harmful effects. A systematic review of the evidence on harms of vitamin supplements is needed. Supplements containing lutein and zeaxanthin are heavily marketed for people with age-related macular degeneration but our review shows they may have little or no effect on the progression of AMD.
Collapse
Affiliation(s)
- Jennifer R Evans
- London School of Hygiene & Tropical MedicineCochrane Eyes and Vision, ICEHKeppel StreetLondonUKWC1E 7HT
| | - John G Lawrenson
- City University of LondonCentre for Applied Vision Research, School of Health SciencesNorthampton SquareLondonUKEC1V 0HB
| | | |
Collapse
|
25
|
Abstract
Current evidence suggests lutein and its isomers play important roles in ocular development in utero and throughout the life span, in vision performance in young and later adulthood, and in lowering risk for the development of common age-related eye diseases in older age. These xanthophyll (oxygen-containing) carotenoids are found in a wide variety of vegetables and fruits, and they are present in especially high concentrations in leafy green vegetables. Additionally, egg yolks and human milk appear to be bioavailable sources. The prevalence of lutein, zeaxanthin, and meso-zeaxanthin in supplements is increasing. Setting optimal and safe ranges of intake requires additional research, particularly in pregnant and lactating women. Accumulating evidence about variable interindividual response to dietary intake of these carotenoids, based on genetic or metabolic influences, suggests that there may be subgroups that benefit from higher levels of intake and/or alternate strategies to improve lutein and zeaxanthin status.
Collapse
Affiliation(s)
- Julie Mares
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin 53726-2336;
| |
Collapse
|
26
|
Benoist d’Azy C, Pereira B, Chiambaretta F, Dutheil F. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0166915. [PMID: 27907028 PMCID: PMC5131953 DOI: 10.1371/journal.pone.0166915] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P < 0.001), and higher in pseudo-exfoliative glaucoma vs primary angle closed glaucoma (effect size = 12.2; 95%CI 8.96–15.5, P < 0.001). In conclusion, oxidative stress increased in glaucoma, both in serum and aqueous humor. Malonyldialdehyde seemed the best biomarkers of oxidative stress in serum. The increase of some antioxidant markers could be a protective response of the eye against oxidative stress.
Collapse
Affiliation(s)
- Cédric Benoist d’Azy
- University Hospital of Clermont-Ferrand (CHU), Ophthalmology, Clermont-Ferrand, France
- University Hospital of Clermont-Ferrand (CHU), Preventive and Occupational Medicine, Clermont-Ferrand, France
| | - Bruno Pereira
- University Hospital of Clermont-Ferrand (CHU), Clinical Research Direction, Clermont-Ferrand, France
| | - Frédéric Chiambaretta
- University Hospital of Clermont-Ferrand (CHU), Ophthalmology, Clermont-Ferrand, France
| | - Frédéric Dutheil
- University Hospital of Clermont-Ferrand (CHU), Preventive and Occupational Medicine, Clermont-Ferrand, France
- CNRS Physiological and Psychosocial Stress, LAPSCO, University Clermont Auvergne, Clermont-Ferrand, France
- Australian Catholic University, Faculty of Health, School of Exercise Science, Melbourne, Australia
- University Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions EA3533, Clermont-Ferrand, France
- Research Centre in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
27
|
Grover AK, Samson SE. Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. Nutr J 2016; 15:1. [PMID: 26728196 PMCID: PMC4700773 DOI: 10.1186/s12937-015-0115-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/21/2015] [Indexed: 01/17/2023] Open
Abstract
Arthritis causes disability due to pain and inflammation in joints. There are many forms of arthritis, one of which is osteoarthritis whose prevalence increases with age. It occurs in various joints including hip, knee and hand with knee osteoarthritis being more prevalent. There is no cure for it. The management strategies include exercise, glucosamine plus chondroitin sulfate and NSAIDs. In vitro and animal studies provide a rationale for the use of antioxidant supplements for its management. This review assesses the reality of the benefits of antioxidant supplements in the management of knee osteoarthritis. Several difficulties were encountered in examining this issue: poorly conducted studies, a lack of uniformity in disease definition and diagnosis, and muddling of conclusions from attempts to isolate the efficacious molecules. The antioxidant supplements with most evidence for benefit for pain relief and function in knee osteoarthritis were based on curcumin and avocado-soya bean unsaponifiables. Boswellia and some herbs used in Ayurvedic and Chinese medicine may also be useful. The benefits of cuisines with the appropriate antioxidants should be assessed because they may be more economical and easier to incorporate into the lifestyle.
Collapse
Affiliation(s)
- Ashok Kumar Grover
- Department of Medicine, HSC 4N41, McMaster University, 1280 Main Street W., Hamilton, ON, L8S 4K1, Canada.
| | - Sue E Samson
- Department of Medicine, HSC 4N41, McMaster University, 1280 Main Street W., Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
28
|
Patel AK, Davis A, Rodriguez ME, Agron S, Hackam AS. Protective effects of a grape-supplemented diet in a mouse model of retinal degeneration. Nutrition 2015; 32:384-90. [PMID: 26732835 DOI: 10.1016/j.nut.2015.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Retinal degenerations are a class of devastating blinding diseases that are characterized by photoreceptor dysfunction and death. In this study, we tested whether grape consumption, in the form of freeze-dried grape powder (FDGP), improves photoreceptor survival in a mouse model of retinal degeneration. METHODS Retinal degeneration was induced in mice by acute oxidative stress using subretinal injection of paraquat. The grape-supplemented diet was made by formulating base mouse chow with FDGP, corresponding to three daily human servings of grapes, and a control diet was formulated with equivalent sugar composition as FDGP (0.68% glucose-0.68% fructose mixture). Mice were placed on the diets at weaning for 5 wk before oxidative stress injury until analysis at 2 wk post-injection. Retinal function was measured using electroretinography, thickness of the photoreceptor layer was measured using optical coherence tomography, and rows of photoreceptor nuclei were counted on histologic sections. RESULTS In mice fed the control diet, oxidative stress significantly reduced photoreceptor layer thickness and photoreceptor numbers. In contrast, retinal thickness and photoreceptor numbers were not reduced by oxidative stress in mice on the grape-supplemented diet, indicating significantly higher photoreceptor survival after injury than mice on the control diet. Furthermore, mice on the grape diet showed preservation of retinal function after oxidative stress injury compared with mice on the control diet. CONCLUSIONS A diet supplemented with grapes rescued retinal structure and function in an oxidative stress-induced mouse model of retinal degeneration, which demonstrates the beneficial effect of grapes on photoreceptors.
Collapse
Affiliation(s)
- Amit K Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashley Davis
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Samantha Agron
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
29
|
German OL, Agnolazza DL, Politi LE, Rotstein NP. Light, lipids and photoreceptor survival: live or let die? Photochem Photobiol Sci 2015. [PMID: 26204250 DOI: 10.1039/c5pp00194c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to its constant exposure to light and its high oxygen consumption the retina is highly sensitive to oxidative damage, which is a common factor in inducing the death of photoreceptors after light damage or in inherited retinal degenerations. The high content of docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, has been suggested to contribute to this sensitivity. DHA is crucial for developing and preserving normal visual function. However, further roles of DHA in the retina are still controversial. Current data support that it can tilt the scale either towards degeneration or survival of retinal cells. DHA peroxidation products can be deleterious to the retina and might lead to retinal degeneration. However, DHA has also been shown to act as, or to be the source of, a survival molecule that protects photoreceptors and retinal pigment epithelium cells from oxidative damage. We have established that DHA protects photoreceptors from oxidative stress-induced apoptosis and promotes their differentiation in vitro. DHA activates the retinoid X receptor (RXR) and the ERK/MAPK pathway, thus regulating the expression of anti and pro-apoptotic proteins. It also orchestrates a diversity of signaling pathways, modulating enzymatic pathways that control the sphingolipid metabolism and activate antioxidant defense mechanisms to promote photoreceptor survival and development. A deeper comprehension of DHA signaling pathways and context-dependent behavior is required to understand its dual functions in retinal physiology.
Collapse
Affiliation(s)
- Olga Lorena German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
30
|
Dimopoulos IS, Chan S, MacLaren RE, MacDonald IM. Pathogenic mechanisms and the prospect of gene therapy for choroideremia. Expert Opin Orphan Drugs 2015; 3:787-798. [PMID: 26251765 PMCID: PMC4522943 DOI: 10.1517/21678707.2015.1046434] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Choroideremia is a rare, X-linked disorder recognized by its specific ocular phenotype as a progressive degenerative retinopathy resulting in blindness. New therapeutic approaches, primarily based on genetic mechanisms, have emerged that aim to prevent the progressive vision loss. AREAS COVERED This article will review the research that has progressed incrementally over the past two decades from mapping to gene discovery, uncovering the presumed mechanisms triggering the retinopathy to preclinical testing of potential therapies. EXPERT OPINION While still in an evaluative phase, the introduction of gene replacement as a potential therapy has been greeted with great enthusiasm by patients, advocacy groups and the medical community.
Collapse
Affiliation(s)
- Ioannis S Dimopoulos
- University of Alberta, Department of Ophthalmology and Visual Sciences, Edmonton, Alberta, Canada
| | - Stephanie Chan
- University of Alberta, Department of Ophthalmology and Visual Sciences, Edmonton, Alberta, Canada
| | - Robert E MacLaren
- Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, UK
- Moorfields Eye Hospital Foundation Trust, NIHR Ophthalmology Biomedical Research Centre, London, UK
| | - Ian M MacDonald
- University of Alberta, Department of Ophthalmology and Visual Sciences, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Localizing the RPGR protein along the cilium: a new method to determine efficacies to treat RPGR mutations. Gene Ther 2015; 22:413-20. [PMID: 25630948 DOI: 10.1038/gt.2014.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 01/18/2023]
Abstract
Retinal dystrophies constitute a group of clinically and genetically heterogeneous diseases that cause visual impairment. As treatments are not readily available, readout assays performed in patient-derived cells can aid in the development and comparative analysis of therapeutic approaches. We describe a new method with which the localization of the retinitis pigmentosa GTPase regulator (RPGR) protein along the cilium can be used as a measure for treatment efficacy. In a patient-derived fibroblast cell line, we found that the RPGR protein is mislocalized along the ciliary axoneme. The patient carried a point mutation that leads to skipping of RPGR exon 10. We confirmed that this skipping is causative for the impaired localization of RPGR using a U7 small nuclear RNA (U7snRNA)-based antisense approach in control cells. Treatment of the patient-derived fibroblasts with therapeutic U1snRNA significantly corrected the proteins' mislocalization. In this proof of principle study, we show that detecting the RPGR protein along the cilium provides a reliable and quantifiable readout assay to evaluate the efficacy of therapies intended to correct or silence RPGR gene mutations. This method opens the possibility to compare different therapeutic agents, and thus facilitate the identification of treatment options for the clinically and molecularly complex RPGR-associated diseases.
Collapse
|
32
|
Rodríguez-Hurtado FJ, Sáez-Moreno JA, Rodríguez-Ferrer JM. Ocular toxicity and functional vision recovery in a patient treated with hydroxychloroquine. ACTA ACUST UNITED AC 2014; 11:170-3. [PMID: 25108668 DOI: 10.1016/j.reuma.2014.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 10/24/2022]
Abstract
CASE REPORT We report the case of a 64-year-old woman with rheumatoid arthritis and Sjögren's syndrome, treated during 48 months with hydroxychloroquine that was removed after an ophthalmological evaluation showed bilateral vision loss associated with paracentral scotoma in the visual field, fundoscopic macular pigmentary changes, and severely impaired central multifocal electrorretinogram (mfERG). Twelve months after treatment withdrawal, visual acuity and central mfERG had surprisingly improved. This is an unusual case of functional recovery after treatment withdrawal. We consider that central mfERG is a more sensitive test than pattern electrorretinogram in the detection of retinal toxicity and functional vision recovery after hydroxychloroquine treatment cessation.
Collapse
Affiliation(s)
| | - José Antonio Sáez-Moreno
- Servicio de Neurofisiología Clínica, Hospital Universitario San Cecilio, Granada, España; Laboratorio de Neurociencia Visual y Cognitiva, Instituto de Neurociencias, Universidad de Granada, Granada, España
| | - José Manuel Rodríguez-Ferrer
- Laboratorio de Neurociencia Visual y Cognitiva, Instituto de Neurociencias, Universidad de Granada, Granada, España
| |
Collapse
|
33
|
Hepatoprotective Effect of Pretreatment with Thymus vulgaris Essential Oil in Experimental Model of Acetaminophen-Induced Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:954136. [PMID: 24639884 PMCID: PMC3932235 DOI: 10.1155/2014/954136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022]
Abstract
Acute liver damage caused by acetaminophen overdose is a significant clinical problem and could benefit from new therapeutic strategies. Objective. This study investigated the hepatoprotective effect of Thymus vulgaris essential oil (TEO), which is used popularly for various beneficial effects, such as its antiseptic, carminative, and antimicrobial effects. The hepatoprotective activity of TEO was determined by assessing serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) in mice. Their livers were then used to determine myeloperoxidase (MPO) enzyme activity and subjected to histological analysis. In vitro antioxidant activity was evaluated by assessing the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•)-scavenging effects of TEO and TEO-induced lipid peroxidation. TEO reduced the levels of the serum marker enzymes AST, ALT, and ALP and MPO activity. The histopathological analysis indicated that TEO prevented acetaminophen-induced necrosis. The essential oil also exhibited antioxidant activity, reflected by its DPPH radical-scavenging effects and in the lipid peroxidation assay. These results suggest that TEO has hepatoprotective effects on acetaminophen-induced hepatic damage in mice.
Collapse
|