1
|
Brandli A, Vessey KA, Fletcher EL. The contribution of pattern recognition receptor signalling in the development of age related macular degeneration: the role of toll-like-receptors and the NLRP3-inflammasome. J Neuroinflammation 2024; 21:64. [PMID: 38443987 PMCID: PMC10913318 DOI: 10.1186/s12974-024-03055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss, characterised by the dysfunction and death of the photoreceptors and retinal pigment epithelium (RPE). Innate immune cell activation and accompanying para-inflammation have been suggested to contribute to the pathogenesis of AMD, although the exact mechanism(s) and signalling pathways remain elusive. Pattern recognition receptors (PRRs) are essential activators of the innate immune system and drivers of para-inflammation. Of these PRRs, the two most prominent are (1) Toll-like receptors (TLR) and (2) NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)-inflammasome have been found to modulate the progression of AMD. Mutations in TLR2 have been found to be associated with an increased risk of developing AMD. In animal models of AMD, inhibition of TLR and NLRP3 has been shown to reduce RPE cell death, inflammation and angiogenesis signalling, offering potential novel treatments for advanced AMD. Here, we examine the evidence for PRRs, TLRs2/3/4, and NLRP3-inflammasome pathways in macular degeneration pathogenesis.
Collapse
Affiliation(s)
- Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Titi-Lartey O, Mohammed I, Amoaku WM. Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases. FRONTIERS IN OPHTHALMOLOGY 2022; 2:850394. [PMID: 38983565 PMCID: PMC11182157 DOI: 10.3389/fopht.2022.850394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 07/11/2024]
Abstract
There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.
Collapse
Affiliation(s)
| | | | - Winfried M. Amoaku
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Battu P, Sharma K, Thangavel R, Singh R, Sharma S, Srivastava V, Anand A. Genotyping of Clinical Parameters in Age-Related Macular Degeneration. Clin Ophthalmol 2022; 16:517-529. [PMID: 35241908 PMCID: PMC8888136 DOI: 10.2147/opth.s318098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Priya Battu
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Ramandeep Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Suresh Sharma
- Department of Statistics, Panjab University, Chandigarh, India
| | - Vinod Srivastava
- College of Health and Behavioral Sciences, Fort Hays State University, Hays, KS, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Correspondence: Akshay Anand, Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India, Tel +911722756094, Email
| |
Collapse
|
4
|
Sharma K, Battu P, Singh R, Sharma SK, Anand A. Modulated anti-VEGF therapy under the influence of lipid metabolizing proteins in Age related macular degeneration: a pilot study. Sci Rep 2022; 12:714. [PMID: 35027571 PMCID: PMC8758686 DOI: 10.1038/s41598-021-04269-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/07/2021] [Indexed: 11/09/2022] Open
Abstract
Age-related macular degeneration (AMD) is a devastating retinal disease that results in irreversible vision loss in the aged population. The complex genetic nature and degree of genetic penetrance require a redefinition of the current therapeutic strategy for AMD. We aimed to investigate the role of modifiers for current anti-VEGF therapy especially for non-responder AMD patients. We recruited 78 wet AMD cases (out of 278 AMD patients) with their socio-demographic and treatment regimen. Serum protein levels were estimated by ELISA in AMD patients. Data pertaining to the number of anti-VEGF injections given (in 1 year) along with clinical images (FFA and OCT) of AMD patients were also included. Visual acuity data (logMAR) for 46 wet AMD cases out of a total of 78 patients were also retrieved to examine the response of anti-VEGF injections in wet AMD cases. Lipid metabolizing genes (LIPC and APOE) have been identified as chief biomarkers for anti-VEGF response in AMD patients. Both genotypes 'CC' and 'GC' of LIPC have found to be associated with a number of anti-VEGF injections in AMD patients which could influence the expression of B3GALTL,HTRA1, IER3, LIPC and SLC16A8 proteins in patients bearing both genotypes as compared to reference genotype. Elevated levels of APOE were also observed in group 2 wet AMD patients as compared to group 1 suggesting the significance of APOE levels in anti-VEGF response. The genotype of B3GALTL has also been shown to have a significant association with the number of anti-VEGF injections. Moreover, visual acuity of group 1 (≤ 4 anti-VEGF injections/year) AMD patients was found significantly improved after 3 doses of anti-VEGF injections and maintained longitudinally as compared to groups 2 and 3. Lipid metabolising genes may impact the outcome of anti-VEGF AMD treatment.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.,Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Priya Battu
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
5
|
Retinal Pigment Epithelium Expressed Toll-like Receptors and Their Potential Role in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms22168387. [PMID: 34445096 PMCID: PMC8395065 DOI: 10.3390/ijms22168387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
(1) Background: Inflammation is a major pathomechanism in the development and progression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involvement of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified 106 studies, of which 54 were included in this review. Based on these studies, the current status of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby potentially constantly providing new TLR ligands, which could perpetuate and, in the long run, exacerbate the inflammatory response, which may contribute to AMD development. Furthermore, the combined activation of RPE and microglia may exacerbate neurotoxic effects.
Collapse
|
6
|
Sharma K, Singh R, Sharma SK, Anand A. Sleeping pattern and activities of daily living modulate protein expression in AMD. PLoS One 2021; 16:e0248523. [PMID: 34061866 PMCID: PMC8168906 DOI: 10.1371/journal.pone.0248523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
Degeneration of macular photoreceptors is a prominent characteristic of age-related macular degeneration (AMD) which leads to devastating and irreversible vision loss in the elderly population. In this exploratory study, the contribution of environmental factors on the progression of AMD pathology by probing the expression of candidate proteins was analyzed. Four hundred and sixty four participants were recruited in the study comprising of AMD (n = 277) and controls (n = 187). Genetics related data was analyzed to demonstrate the activities of daily living (ADL) by using regression analysis and statistical modeling, including contrast estimate, multinomial regression analysis in AMD progression. Regression analysis revealed contribution of smoking, alcohol, and sleeping hours on AMD by altered expression of IER-3, HTRA1, B3GALTL, LIPC and TIMP3 as compared to normal levels. Contrast estimate supports the gender polarization phenomenon in AMD by significant decreased expression of SLC16A8 and LIPC in control population which was found to be unaltered in AMD patients. The smoking, food habits and duration of night sleeping hours also contributed in AMD progression as evident from multinomial regression analysis. Predicted model (prediction estimate = 86.7%) also indicated the crucial role of night sleeping hours along with the decreased expression of TIMP-3, IER3 and SLC16A8. Results revealed an unambiguous role of environmental factors in AMD progression mediated by various regulatory proteins which might result in intermittent AMD phenotypes and possibly influence the outcome of anti-VEGF treatment.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Duncan RS, Rohowetz L, Vogt A, Koulen P. Repeat exposure to polyinosinic:polycytidylic acid induces TLR3 expression via JAK-STAT signaling and synergistically potentiates NFκB-RelA signaling in ARPE-19 cells. Cell Signal 2019; 66:109494. [PMID: 31809875 DOI: 10.1016/j.cellsig.2019.109494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 01/05/2023]
Abstract
Dry age-related macular degeneration (AMD), accounting for approximately 90% of AMD cases, is characterized by photoreceptor death, retinal pigment epithelium (RPE) dysfunction and, ultimately, geographic atrophy - the localized death of RPE leading to loss of the center of the visual field. The pathological etiology of AMD is multifactorial, but innate immune signaling and inflammation are involved in early stages of the disease. Although numerous single-nucleotide polymorphisms in innate immune genes are associated with dry AMD, no single gene appears to cause dry AMD. Here, we hypothesized that activation of TLR3 potentiates expression of TLR3 itself and the NFκB-p65 (RelA) subunit as part of pro-inflammatory RPE signaling. Furthermore, we hypothesized that TLR3 activation can 'prime' cells to future RelA stimulation, leading to enhanced, persistent RelA expression and signaling following a second TLR3 activation. We used the human RPE-derived cell line ARPE-19 as a model system for RPE signaling and measured NFκB expression and activity in response to TLR3 stimulation with its ligand, polyinosinic:polycytidylic acid (pI:C). Activation of TLR3 with pI:C led to increased TLR3 and RelA expression that was sustained for at least 24 h. Cells exposed for a second time to pI:C after an initial pI:C exposure displayed elevated RelA expression and RelA nuclear translocation above the level generated by individual primary or secondary exposures alone. Such an elevated response could also not be generated by a single application of higher concentrations of the agonist pI:C. Additionally, we determined the mechanism for TLR3 mediated TLR3 and RelA expression by using inhibitors of canonical TLR3-TBK1-IKKε and JAK-STAT signaling pathways. These data suggest that initial exposure of ARPE-19 cells to pI:C upregulates TLR3 and RelA signaling, leading to potentiated and persistent RelA signaling potentially generated by a positive feedback loop that may cause exacerbated inflammation in AMD. Furthermore, inhibition of JAK-STAT signaling may be a possible therapeutic treatment to prevent induction of TLR3 expression subsequent to pI:C exposure. Our results identify possible therapeutic targets to reduce the TLR3 positive feedback loop and subsequent overproduction of pro-inflammatory cytokines in RPE cells.
Collapse
Affiliation(s)
- R Scott Duncan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America.
| | - Landon Rohowetz
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America
| | - Alex Vogt
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America; Department of Biomedical Sciences, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO 64108, United States of America
| |
Collapse
|
8
|
Toll-Like Receptors and Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:19-28. [DOI: 10.1007/978-3-319-75402-4_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Anand A, Sharma K, Sharma SK, Singh R, Sharma NK, Prasad K. AMD Genetics in India: The Missing Links. Front Aging Neurosci 2016; 8:115. [PMID: 27252648 PMCID: PMC4876307 DOI: 10.3389/fnagi.2016.00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 01/28/2023] Open
Abstract
Age related macular degeneration is a disease which occurs in aged individuals. There are various changes that occur at the cellular, molecular and physiological level with advancing age (Samiec et al., 1988; Sharma K. et al., 2014). Drusen deposition between retinal pigment epithelium (RPE) and Bruch’s membrane (BM) is one of the key features in AMD patients (Mullins et al., 2000; Hageman et al., 2001) similar to Aβ/tau aggregates in Alzheimer’s disease (AD) patients. The primary goal of this review is to discuss whether the various candidate genes and associated biomarkers, that are known to play an independent role in progression of AMD, exert deleterious effect on phenotype, alone or in combination, in Indian AMD patients from the same ethnic group and the significance of such research. A statistical model for probable interaction between genes could be derived from such analysis. Therefore, one can use multiple modalities to identify and enrol AMD patients based on established clinical criteria and examine the risk factors to determine if these genes are associated with risk factors, biomarkers or disease by Mendelian randomization. Similarly, there are large numbers of single nucleotide polymorphisms (SNPs) identified in human population. Even non-synonymous SNPs (nsSNPs) are believed to induce deleterious effects on the functionality of various proteins. The study of such snSNPs could provide a better genetic insight for diverse phenotypes of AMD patients, predicting significant risk factors for the disease in Indian population. Therefore, the prediction of biological effect of nsSNPs in the candidate genes and the associated grant applications in the subject are highly solicited.Therefore, genotyping and levels of protein expression of various genes would provide wider canvas in genetic complexity of AMD pathology which should be evaluated by valid statistical and bioinformatics’ tools. Longitudinal follow up of Indian AMD patients to evaluate the temporal effect of SNPs and biomarkers on progression of disease would provide a unique strategy in the field.
Collapse
Affiliation(s)
- Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India; Centre for Systems Biology and Bioinformatics, Panjab UniversityChandigarh, India
| | - Suresh K Sharma
- Centre for Systems Biology and Bioinformatics, Panjab UniversityChandigarh, India; Department of Statistics, Panjab UniversityChandigarh, India
| | - Ramandeep Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Neel K Sharma
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute Bethesda, MD, USA
| | - Keshava Prasad
- Institute of BioinformaticsBangalore, India; YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya UniversityMangalore, India; NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and NeurosciencesBangalore, India
| |
Collapse
|
10
|
Ma L, Tang FY, Chu WK, Young AL, Brelen ME, Pang CP, Chen LJ. Association of toll-like receptor 3 polymorphism rs3775291 with age-related macular degeneration: a systematic review and meta-analysis. Sci Rep 2016; 6:19718. [PMID: 26796995 PMCID: PMC4726375 DOI: 10.1038/srep19718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/17/2015] [Indexed: 11/24/2022] Open
Abstract
Association of a polymorphism rs3775291 in the toll-like receptor 3 (TLR3) gene with age-related macular degeneration (AMD) had been investigated intensively, with variable results across studies. Here we conducted a meta-analysis to verify the effect of rs3775291 on AMD. We searched for genetic association studies published in PubMed, EMBASE and Web of Science from start dates to March 10, 2015. Totally 235 reports were retrieved and 9 studies were included for meta-analysis, involving 7400 cases and 13579 controls. Summary odds ratios (ORs) with 95% confidence intervals (CIs) for alleles and genotypes were estimated. TLR3 rs3775291 was associated with both geographic atrophy (GA) and neovascular AMD (nAMD), with marginally significant pooled-P values. Stratification analysis by ethnicity indicated that rs3775291 was associated with all forms of AMD, GA and nAMD only in Caucasians (OR = 0.87, 0.78 and 0.77, respectively, for the TT genotype) but not in East Asians. However, the associations could not withstand Bonferroni correction. This meta-analysis has thus revealed suggestive evidence for TLR3 rs3775291 as an associated marker for AMD in Caucasians but not in Asians. This SNP may have only a small effect on AMD susceptibility. Further studies in larger samples are warranted to confirm its role.
Collapse
Affiliation(s)
- Li Ma
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fang Yao Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales hospital, Hong Kong, China
| | - Marten E Brelen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales hospital, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales hospital, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales hospital, Hong Kong, China
| |
Collapse
|
11
|
Sharma K, Sharma NK, Singh R, Anand A. Exploring the role of VEGF in Indian Age related macular degeneration. Ann Neurosci 2015; 22:232-7. [PMID: 26526736 PMCID: PMC4627204 DOI: 10.5214/ans.0972.7531.220408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Age related macular degeneration (AMD) is major devastating neurodegenerative disorder characterized by progressive irreversible vision loss in the elderly persons. In spite of several genetic and environmental factors, the role of VEGF and CFH predispose the pathological phenomenon in the AMD patients. PURPOSE The aim of the study was to estimate the VEGF levels in the serum of AMD patients and its correlation with co-morbidity of the participants. METHODS The study recruited the 98 AMD patients and 59 controls with proper consent of the participants as per the exclusion-inclusion criteria. The co-morbidity and socio-economic details were obtained by introducing the standard questionnaire amongst the participants. Serum levels of vascular endothelial growth factor (VEGF) was estimated by ELISA and compared with the control population of the study. The levels of VEGF in the serum of AMD patients and controls were compared with Mann-Whitney U-test. Kruskal Wallis one-way analysis of variance (ANOVA) was employed to analyze more than two variables in the study. RESULTS Elevated level of VEGF was found in AMD patients as compared to controls. Surprisingly, we did not find significant changes among wet AMD subtypes i.e. minimal, predominant and classic wet AMD. However, we have demonstrated the intravitreal anti-VEGF treatment (avastin) in AMD patients could reduce the systemic VEGF levels although it was not significant. Moreover, the heart ailment in the AMD patients could also influence the VEGF levels. CONCLUSION Our study is consistent with previous studies describing the imperative significance of VEGF in AMD pathology. However, our study did not reveal the role of VEGF in wet AMD progression but it is well established causative agent for the same. The increased levels of VEGF in heart ailment among AMD patients are significant.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate institute of Medical Education and Research, Chandigarh, India
- Centre for Systems biology and Bioinformatics, Panjab University, Chandigarh, India
- *Both contributed equally to the manuscript
| | - Neel K Sharma
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, USA
- *Both contributed equally to the manuscript
| | - Ramandeep Singh
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Güven M, Batar B, Mutlu T, Bostancı M, Mete M, Aras C, Ünal M. Toll-Like Receptors 2 and 4 Polymorphisms in Age-Related Macular Degeneration. Curr Eye Res 2015; 41:856-61. [DOI: 10.3109/02713683.2015.1067326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mehmet Güven
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul, Istanbul, Turkey,
| | - Bahadır Batar
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul, Istanbul, Turkey,
| | - Tuba Mutlu
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul, Istanbul, Turkey,
| | - Merve Bostancı
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul, Istanbul, Turkey,
| | - Meltem Mete
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul, Istanbul, Turkey,
| | - Cengiz Aras
- Department of Ophthalmology, Cerrahpasa Faculty of Medicine, University of Istanbul, Istanbul, Turkey and
| | - Mustafa Ünal
- Department of Ophthalmology, Akdeniz University Medical Faculty, Antalya, Turkey
| |
Collapse
|