1
|
Kiani Ghalesardi O, Zaker F, Ghotaslou A, Boustani H, Rezvani MR, Kiani J, Shahidi M. Effect of siRNA-mediated silencing of p53R2 gene on sensitivity of T-ALL cellsto Daunorubicin. Gene 2023; 880:147622. [PMID: 37419428 DOI: 10.1016/j.gene.2023.147622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION p53R2 is a p53-inducible protein that, as one of the subunits of ribonucleotide reductase, plays an important role in providing dNTPs for DNA repair. Although p53R2 is associated with cancer progression, its role in T-cell acute lymphoblastic leukemia (T-ALL) cells is unknown. Therefore, in this study, we evaluated the effect of p53R2 silencing on double-stranded DNA breaks, apoptosis and cell cycle of T-ALL cells treated with Daunorubicin. METHODS Transfection was performed using Polyethyleneimine (PEI). Gene expression was measured using real-time PCR and protein expression was evaluated using Western blotting. Cell metabolic activity and IC50 were calculated using MTT assay, formation of double-stranded DNA breaks was checked using immunohistochemistry for γH2AX, and cell cycle and apoptosis were evaluated using flow cytometry. RESULTS We found that p53 silencing synergistically inhibited the growth of T-ALL cells by Daunorubicin. p53R2 siRNA in combination with Daunorubicin but not alone increases the rate of DNA double-strand breaks in T-ALL cells. In addition, p53R2 siRNA significantly increased Daunorubicin-induced apoptosis. p53R2 siRNA also caused a non-significant increase in cells in G2 phase. CONCLUSION The results of the present study showed that silencing of p53R2 using siRNA can significantly increase the antitumor effects of Daunorubicin on T-ALL cells. Therefore, p53R2 siRNA has the potential to be used as an adjuvant therapy in combination with Daunorubicin in T-ALL.
Collapse
Affiliation(s)
- Omid Kiani Ghalesardi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghotaslou
- Department of Clinical laboratory sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Boustani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Reza Rezvani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Activated cell-cycle CDK4/CyclinD1-pRB-E2F1 signaling pathway is involved in the apoptosis of dorsal raphe nucleus in the rat model of PTSD. Biochem Biophys Res Commun 2022; 602:142-148. [PMID: 35272144 DOI: 10.1016/j.bbrc.2022.02.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 02/26/2022] [Indexed: 11/23/2022]
Abstract
Dysregulation of the dorsal raphe nucleus (DRN) has been revealed to contribute to cognitive and arousal impairments associated with post-traumatic stress disorder (PTSD) in an animal model. In our research an acute exposure to single prolonged stress (SPS) was used to establish PTSD rat model and the effects related to cell-cycle signaling pathway in DRN were examined. Apoptosis in DRN was detected by TUNEL staining, showing that DRN apoptosis number was sharply increased after SPS. SPS triggered cell-cycle CDK4/CyclinD1-pRB-E2F1 signal pathway. Treatment with CDK4 inhibitor Abemaciclib successfully attenuated the DRN apoptosis and rescued decreased spatial learning and memory abilities in SPS rats, indicating that activation of CDK4/CyclinD1-pRB-E2F1 pathway was involved in DRN apoptosis, which may be one of the pathogenesis for PTSD.
Collapse
|
3
|
Iqbal W, Demidova EV, Serrao S, ValizadehAslani T, Rosen G, Arora S. RRM2B Is Frequently Amplified Across Multiple Tumor Types: Implications for DNA Repair, Cellular Survival, and Cancer Therapy. Front Genet 2021; 12:628758. [PMID: 33868369 PMCID: PMC8045241 DOI: 10.3389/fgene.2021.628758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
RRM2B plays a crucial role in DNA replication, repair and oxidative stress. While germline RRM2B mutations have been implicated in mitochondrial disorders, its relevance to cancer has not been established. Here, using TCGA studies, we investigated RRM2B alterations in cancer. We found that RRM2B is highly amplified in multiple tumor types, particularly in MYC-amplified tumors, and is associated with increased RRM2B mRNA expression. We also observed that the chromosomal region 8q22.3–8q24, is amplified in multiple tumors, and includes RRM2B, MYC along with several other cancer-associated genes. An analysis of genes within this 8q-amplicon showed that cancers that have both RRM2B-amplified along with MYC have a distinct pattern of amplification compared to cancers that are unaltered or those that have amplifications in RRM2B or MYC only. Investigation of curated biological interactions revealed that gene products of the amplified 8q22.3–8q24 region have important roles in DNA repair, DNA damage response, oxygen sensing, and apoptosis pathways and interact functionally. Notably, RRM2B-amplified cancers are characterized by mutation signatures of defective DNA repair and oxidative stress, and at least RRM2B-amplified breast cancers are associated with poor clinical outcome. These data suggest alterations in RR2MB and possibly the interacting 8q-proteins could have a profound effect on regulatory pathways such as DNA repair and cellular survival, highlighting therapeutic opportunities in these cancers.
Collapse
Affiliation(s)
- Waleed Iqbal
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University College of Engineering, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Samantha Serrao
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Taha ValizadehAslani
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Gail Rosen
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
4
|
Azimi A, Majidinia M, Shafiei-Irannejad V, Jahanban-Esfahlan R, Ahmadi Y, Karimian A, Mir SM, Karami H, Yousefi B. Suppression of p53R2 gene expression with specific siRNA sensitizes HepG2 cells to doxorubicin. Gene 2018; 642:249-255. [DOI: 10.1016/j.gene.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
|
5
|
Narayanaswamy PB, Baral TK, Haller H, Dumler I, Acharya K, Kiyan Y. Transcriptomic pathway analysis of urokinase receptor silenced breast cancer cells: a microarray study. Oncotarget 2017; 8:101572-101590. [PMID: 29254187 PMCID: PMC5731897 DOI: 10.18632/oncotarget.21351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023] Open
Abstract
Urokinase plasminogen activator receptor (PLAUR) has been implicated in a variety of physiological and pathological conditions. The multi-functionality of PLAUR is due to its capacity to interact with many co-receptors to regulate extracellular proteolysis and intracellular signaling. Recent reports are identifying novel functions of PLAUR which were not evident in the past; however, the molecular mechanisms of PLAUR signaling are not completely understood. Here, we have compared the transcriptomes of silencing control (sicon) and PLAUR silenced (PLAURsi) MDA-MB-231 breast cancer cells on treatment with radiation. We isolated RNA from the cells, synthesized cDNA and measured the gene expression changes by microarray. We identified 24 downregulated and 53 upregulated genes, which were significantly (P-value < 0.005) affected by PLAUR silencing. Our analysis revealed 415 canonical pathways and 743 causal disease networks affected on silencing PLAUR. Transcriptomic changes and predicted pathways supported and consolidated some of the earlier understanding in the context of PLAUR signaling; including our recent observations in DNA damage and repair process. In addition, we have identified several novel pathways where PLAUR is implicated.
Collapse
Affiliation(s)
| | - Tapan K Baral
- Shodhaka Life Sciences Private Limited, Bengaluru, India
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Inna Dumler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Kshitish Acharya
- Shodhaka Life Sciences Private Limited, Bengaluru, India.,Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Yulia Kiyan
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Jiang C, Xu R, Li XX, Wang YY, Liang WQ, Zeng JD, Zhang SS, Xu XY, Yang Y, Zhang MY, Wang HY, Zheng XFS. p53R2 overexpression in cervical cancer promotes AKT signaling and EMT, and is correlated with tumor progression, metastasis and poor prognosis. Cell Cycle 2017; 16:1673-1682. [PMID: 28841361 DOI: 10.1080/15384101.2017.1320629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
p53R2 is a p53-inducible ribonucleotide reductase subunit involved in deoxyribonucleotide biosynthesis and DNA repair. Although p53R2 has been linked to human cancer, its role in cervical cancer remains unknown. In this study, we investigated the expression and clinical significance of p53R2 in early-stage cervical cancer. p53R2 expression is significantly upregulated at both mRNA and protein levels in cervical cancer cells and tissues, compared with that in matched normal cervical cells and tissues, respectively. p53R2 overexpression is associated with increased risk of pelvic lymph node metastasis (PLNM, p = 0.001) and cancer relapse (p = 0.009). Patients with high p53R2 expression have a shorter overall survival (OS) and disease-free survival (DFS). p53R2 is an independent factor for predicting OS and DFS of cervical cancer patients. We further show that p53R2 is important for oncogenic growth, migration and invasion in cervical cancer cells. Mechanistically, p53R2 promotes Akt signaling and epithelial-mesenchymal transition (EMT). In conclusion, our study demonstrates for the first time that p53R2 protein is overexpressed in early-stage cervical cancer and unravels some unconventional oncogenic functions of p53R2. p53R2 may be a useful prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Chao Jiang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Rui Xu
- b Department of Internal Medicine , Cancer Center of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Xiao-Xing Li
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Yan-Yan Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Wen-Qian Liang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Ju-Deng Zeng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Shan-Shan Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Xiao-Yi Xu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Yang Yang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Mei-Yin Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Hui-Yun Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China.,c Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers , The State University of New Jersey , New Brunswick , NJ , USA
| | - X F Steven Zheng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China.,c Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers , The State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|
7
|
5-aza-2',2'-Difluoro Deoxycytidine (NUC013): A Novel Nucleoside DNA Methyl Transferase Inhibitor and Ribonucleotide Reductase Inhibitor for the Treatment of Cancer. Pharmaceuticals (Basel) 2017; 10:ph10030065. [PMID: 28726739 PMCID: PMC5620609 DOI: 10.3390/ph10030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/19/2017] [Accepted: 07/16/2017] [Indexed: 01/06/2023] Open
Abstract
Tumor suppressor genes can be silenced genetically as well as epigenetically. One approach to reversing epigenetic suppression of tumor suppressor genes is to inhibit DNA methyl transferase. 5-aza-2′,2′-diflurorodeoxycytidine (NUC013) is a novel DNA methyl transferase and ribonucleotide reductase inhibitor that is a more potent inhibitor of growth than decitabine in the NCI 60 cancer cell line panel. NUC013 is more active than decitabine against p53-null/mutant cancer cell lines (p = 0.027) but is even more so against p53 wild-type (WT) cell lines (p = 0.0025). The maximum tolerated dose in mice of NUC013 is greater than 120 mg/kg administered intravenously for three consecutive days a week for three weeks. With this regimen and a dose of 20 mg/kg in a human leukemia HL-60 (p53-null) NCr-nu/nu mouse xenograft model (n = 10/group), NUC013 demonstrated a survival benefit (saline median survival (MS) = 26.5 days, NUC013 MS = 32 days and hazard ratio (HR) = 0.26 (p = 0.032)). In a colon cancer LoVo (TP53 WT) xenograft, mice treated with decitabine at 5 mg/kg had worse survival than saline controls (decitabine MS = 31 days, saline MS > 60 days and HR = 26.89 (p < 0.0001)). At a dose of 20 mg/kg NUC013, mean tumor volume in the LoVo xenografts was lower than controls by 50.9% and at 40 mg/kg by 53.7% (both p < 0.0001).
Collapse
|
8
|
Shafiei-Roudbari SK, Malekinejad H, Janbaz-Aciabar H, Razi M. Crosstalk between E2F1 and P53 transcription factors in doxorubicin-induced DNA damage: evidence for preventive/protective effects of silymarin. J Pharm Pharmacol 2017; 69:1116-1124. [DOI: 10.1111/jphp.12745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
Abstract
Objectives
To study the effects of silymarin in various forms of applications on the molecular mechanism(s) of doxorubicin-induced testicular toxicity in male rats.
Methods
Following DOX administration with or without SMN in male rats, sperm quality assays were conducted. Moreover, total antioxidant capacity and nitric oxide content of testis were determined. Expression profile of p53 and E2F1 was analysed by PCR technique. Ultimately, the rate of DNA fragmentation in the testes was quantitatively measured.
Key findings
P53 and E2F1 expression in DOX-received animals at mRNA level showed a revers profile of an up- and down-regulation, respectively. Administration of SMN in preventive and protective forms resulted in a significant (P < 0.05) reduction in DOX-induced sperm abnormalities, DNA fragmentation, nitric oxide concentration and a marked increase in total antioxidant power, rate of sperm motility and viability. SMN lowered the DOX-up-regulated expression of p53 at mRNA level.
Conclusions
DOX-induced testicular toxicity was characterized by lowering sperm quality values, induction of oxidative and nitrosative stress and DNA fragmentation. Preventive and protective effects of SMN on DOX-induced testicular toxicity may attribute to its antioxidant property. DOX-induced testicular damages and SMN preventive/protective effects might be mediated via up- and down-regulation of p53 and E2F1 transcription factors.
Collapse
Affiliation(s)
| | - Hassan Malekinejad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Janbaz-Aciabar
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mazdak Razi
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. Cell Discov 2016; 2:16013. [PMID: 27462460 PMCID: PMC4906801 DOI: 10.1038/celldisc.2016.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response involves coordinated control of gene expression and DNA repair. Using deep sequencing, we found widespread changes of alternative cleavage and polyadenylation site usage on ultraviolet-treatment in mammalian cells. Alternative cleavage and polyadenylation regulation in the 3ʹ untranslated region is substantial, leading to both shortening and lengthening of 3ʹ untranslated regions of genes. Interestingly, a strong activation of intronic alternative cleavage and polyadenylation sites is detected, resulting in widespread expression of truncated transcripts. Intronic alternative cleavage and polyadenylation events are biased to the 5ʹ end of genes and affect gene groups with important functions in DNA damage response and cancer. Moreover, intronic alternative cleavage and polyadenylation site activation during DNA damage response correlates with a decrease in U1 snRNA levels, and is reversible by U1 snRNA overexpression. Importantly, U1 snRNA overexpression mitigates ultraviolet-induced apoptosis. Together, these data reveal a significant gene regulatory scheme in DNA damage response where U1 snRNA impacts gene expression via the U1-alternative cleavage and polyadenylation axis.
Collapse
|
10
|
Cho E, Yen Y. Novel regulators and molecular mechanisms of p53R2 and its disease relevance. Biochimie 2016; 123:81-4. [DOI: 10.1016/j.biochi.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|