1
|
Sarkar J, Chakraborti T, Pramanik PK, Ghosh P, Mandal A, Chakraborti S. PKCζ-NADPH Oxidase-PKCα Dependent Kv1.5 Phosphorylation by Endothelin-1 Modulates Nav1.5-NCX1-Cav1.2 Axis in Stimulating Ca 2+ Level in Caveolae of Pulmonary Artery Smooth Muscle Cells. Cell Biochem Biophys 2020; 79:57-71. [PMID: 33095400 DOI: 10.1007/s12013-020-00954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 11/29/2022]
Abstract
Endothelin-1 (ET-1) is a potent endogenously derived vasoconstrictor, which increases pulmonary hypertension via stimulation of [Ca2+]i level in pulmonary artery smooth muscle cells (PASMCs). In this communication, we sought to investigate the mechanism by which ET-1 causes stimulation of Ca2+ concentration in caveolae vesicles of bovine PASMCs (BPASMCs). ET-1 activates PKC-α in the caveolae vesicles by O2.- derived from PKCζ-NADPH oxidase dependent pathway. PKC-α phosphorylates Kv1.5 channels leading to a marked stimulation of Na+ and Ca2+ concentration in the caveolae vesicles. The stimulation of Ca2+ concentration in the caveolae vesicles by ET-1 occurs predominantly via Cav1.2 channels. Additionally, an increase in Na+ concentration by ET-1 due to stimulation of Nav1.5 channels marginally increases Ca2+ level in the caveolae vesicles via reverse-mode Na+/Ca2+ exchanger (NCX-1) and also through "slip-mode conductance" Nav1.5 channels. 4-AP, a well-known inhibitor of Kv channels, also increases Ca2+ concentration in the caveolae vesicles via Cav1.2 channels, reverse-mode NCX-1 and Nav1.5 channels by phosphorylation independent modulation of Kv1.5 channels without the involvement of PKCζ-NADPH oxidase-PKCα signaling axis. Overall, PKCζ-NADPH oxidase-PKCα dependent phosphorylation of Kv1.5 by ET-1 modulates Nav1.5-NCX1-Cav1.2 axis for stimulation of Ca2+ concentration in caveolae vesicles of BPASMCs, which provides a crucial mechanism for better understanding of ET-1-mediated modulation of pulmonary vascular tone.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Priyanka Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Amritlal Mandal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
2
|
Sarkar J, Chakraborti T, Chowdhury A, Bhuyan R, Chakraborti S. Protective role of epigallocatechin-3-gallate in NADPH oxidase-MMP2-Spm-Cer-S1P signalling axis mediated ET-1 induced pulmonary artery smooth muscle cell proliferation. J Cell Commun Signal 2019; 13:473-489. [PMID: 30661173 DOI: 10.1007/s12079-018-00501-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
The signalling pathway involving MMP-2 and sphingosine-1-phosphate (S1P) in endothelin-1 (ET-1) induced pulmonary artery smooth muscle cell (PASMC) proliferation is not clearly known. We, therefore, investigated the role of NADPH oxidase derived O2.--mediated modulation of MMP2-sphingomyeline-ceramide-S1P signalling axis in ET-1 induced increase in proliferation of PASMCs. Additionally, protective role of the tea cathechin, epigallocatechin-3-gallate (EGCG), if any, in this scenario has also been explored. ET-1 markedly increased NADPH oxidase and MMP-2 activities and proliferation of bovine pulmonary artery smooth muscle cells (BPASMCs). ET-1 also caused significant increase in sphingomyelinase (SMase) activity, ERK1/2 and sphingosine kinase (SPHK) phosphorylations, and S1P level in the cells. EGCG inhibited ET-1 induced increase in SMase activity, ERK1/2 and SPHK phosphorylations, S1P level and the SMC proliferation. EGCG also attenuated ET-1 induced activation of MMP-2 by inhibiting NADPH oxidase activity upon inhibiting the association of the NADPH oxidase components, p47phox and p67phox in the cell membrane. Molecular docking study revealed a marked binding affinity of p47phox with the galloyl group of EGCG. Overall, our study suggest that ET-1 induced proliferation of the PASMCs occurs via NADPH oxidase-MMP2- Spm- Cer-S1P signalling axis, and EGCG attenuates ET-1 induced increase in proliferation of the cells by inhibiting NADPH oxidase activity.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Rajabrata Bhuyan
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
3
|
Chakraborti S, Sarkar J, Chowdhury A, Chakraborti T. Role of ADP ribosylation factor6- Cytohesin1-PhospholipaseD signaling axis in U46619 induced activation of NADPH oxidase in pulmonary artery smooth muscle cell membrane. Arch Biochem Biophys 2017; 633:1-14. [PMID: 28822840 DOI: 10.1016/j.abb.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Treatment of human pulmonary artery smooth muscle cells (HPASMCs) with the thromboxane A2 receptor antagonist, SQ29548 inhibited U46619 stimulation of phospholipase D (PLD) and NADPH oxidase activities in the cell membrane. Pretreatment with apocynin inhibited U46619 induced increase in NADPH oxidase activity. The cell membrane contains predominantly PLD2 along with PLD1 isoforms of PLD. Pretreatment with pharmacological and genetic inhibitors of PLD2, but not PLD1, attenuated U46619 stimulation of NADPH oxidase activity. U46619 stimulation of PLD and NADPH oxidase activities were insensitive to BFA and Clostridium botulinum C3 toxin; however, pretreatment with secinH3 inhibited U46619 induced increase in PLD and NADPH oxidase activities suggesting a major role of cytohesin in U46619-induced increase in PLD and NADPH oxidase activities. Arf-1, Arf-6, cytohesin-1 and cytohesin-2 were observed in the cytosolic fraction, but only Arf-6 and cytohesin-1 were translocated to the cell membrane upon treatment with U46619. Coimmunoprecipitation study showed association of Arf-6 with cytohesin-1 in the cell membrane fraction. In vitro binding of GTPγS with Arf-6 required the presence of cytohesin-1 and that occurs in BFA insensitive manner. Overall, BFA insensitive Arf6-cytohesin1 signaling axis plays a pivotal role in U46619-mediated activation of PLD leading to stimulation of NADPH oxidase activity in HPASMCs.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
4
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
5
|
Lee TM, Chang NC, Lin SZ. Inhibition of infarction-induced sympathetic innervation with endothelin receptor antagonism via a PI3K/GSK-3β-dependent pathway. J Transl Med 2017; 97:243-255. [PMID: 27991911 DOI: 10.1038/labinvest.2016.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022] Open
Abstract
Although endothelin (ET)-1 has been shown to upregulate nerve growth factor (NGF) expression, the molecular mechanisms are largely unknown. Phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase (GSK)-3β signal has been implicated in the regulation of NGF. We investigated whether selective ET receptor blockers attenuated cardiac sympathetic reinnervation through restoring PI3K/Akt/GSK-3β activity. After ligation of the left anterior descending artery, male Wistar rats were randomized to either vehicle, atrasentan (an ETA receptor antagonist) or A-192621 (an ETB receptor antagonist) for 4 weeks. Sympathetic hyperinnervation after infarction was confirmed by myocardial norepinephrine measurement and immunofluorescent analysis. Post infarction was associated with increased reactive oxygen species (ROS), as measured by myocardial superoxide levels and dihydroethidine fluorescence staining. This was paralleled by a significant upregulation of NGF expression on mRNA and protein levels in the vehicle-treated rats, which reduced after administering atrasentan, not A-192621. Arrhythmic scores in the vehicle-treated rats were significantly higher than those treated with atrasentan. In an in vivo study atrasentan-induced decreased NGF was associated with activation of PI3K/Akt signaling pathway, which was further confirmed by the ex vivo study showing the restoration of NGF levels after coadministration of PI3K inhibitors (wortmannin and LY294002). Lithium chloride, an inhibitor of GSK-3β, did not provide additional attenuated NGF levels compared with atrasentan alone. Finally, atrasentan-attenuated NGF levels were reversed in the presence of peroxynitrite generator. ETA receptor antagonism is a mediator to attenuate sympathetic hyperinnervation probably through restoration of PI3K/Akt/GSK-3β/ROS signaling pathway, a potential pharmacological target for arrhythmias after infarction.
Collapse
Affiliation(s)
- T-M Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi foundation, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
6
|
Cross talk between MMP2-Spm-Cer-S1P and ERK1/2 in proliferation of pulmonary artery smooth muscle cells under angiotensin II stimulation. Arch Biochem Biophys 2016; 603:91-101. [PMID: 27210740 DOI: 10.1016/j.abb.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022]
Abstract
The aim of the present study is to establish the mechanism associated with the proliferation of PASMCs under ANG II stimulation. The results showed that treatment of PASMCs with ANG II induces an increase in cell proliferation and 100 nM was the optimum concentration for maximum increase in proliferation of the cells. Pretreatment of the cells with AT1, but not AT2, receptor antagonist inhibited ANG II induced cell proliferation. Pretreatment with pharmacological and genetic inhibitors of sphingomyelinase (SMase) and sphingosine kinase (SPHK) prevented ANG II-induced cell proliferation. ANG II has also been shown to induce SMase activity, SPHK phosphorylation and S1P production. In addition, ANG II caused an increase in proMMP-2 expression and activation, ERK1/2 phosphorylation and NADPH oxidase activation. Upon inhibition of MMP-2, SMase activity and S1P level were curbed leading to inhibition of cell proliferation. SPHK was phosphorylated by ERK1/2 during ET-1 stimulation of the cells. ANG II-induced ERK1/2 phosphorylation and proMMP-2 expression and activation in the cells were abrogated upon inhibition of NADPH oxidase activity. Overall, NADPH oxidase plays an important role in proMMP-2 expression and activation and that MMP-2 mediated SMC proliferation occurs through the involvement of Spm-Cer-S1P signaling axis under ANG II stimulation of PASMCs.
Collapse
|
7
|
Gorąca A, Kleniewska P, Skibska B. ET-1 mediates the release of reactive oxygen species and TNF-α in lung tissue by protein kinase C α and β1. Pharmacol Rep 2015; 68:121-6. [PMID: 26721363 DOI: 10.1016/j.pharep.2015.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The aim of this study was to determine the involvement of protein kinase C (PKC) in the ET-1 induced generation of reactive oxygen species and TNF-α in rat lungs. METHODS Experiments were performed on 6 groups of rats: Group I: saline-treated control; Group II: saline followed by endothelin-1 (ET-1) (3μg/kg); Group III: saline followed by selective PKC αβ1 inhibitor (Gö6976) (2μg/kg); Group IV: Gö6976 (2μg/kg) administered 30min before ET-1 (3μg/kg); Group V: saline followed by the PKC activator phorbol 12-myristate 13-acetate (PMA) (50μg/kg); Group VI: Gö6976 (2μg/kg) administered 30min before PMA (50μg/kg). After 5h, the animals were euthanized and their lungs were isolated for measurements. RESULTS ET-1 resulted in increase in thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels and lung edema, as well as a decrease in GSH/GSSG ratio compared to the controls. The level of TNF-α also was elevated in the presence of ET-1. Administration of Gö6976 30min before ET-1 injection significantly decreased lung edema, as well as the concentrations of TBARS, H2O2 and TNF-α, but increased the GSH/GSSG redox ratio compared to ET-1. Conversely, PMA elevated lung edema and TBARS, H2O2 and TNF-α concentrations, but decreased the GSH/GSSG redox ratio compared to the control group. Treatment with Gö6976 significantly ameliorated the PMA-induced oxidative stress parameters, decreased tissue TNF-α level, and lung edema. CONCLUSION Endothelin-1 induces ROS generation, increases TNF-α level and lung edema via activation of PKC αβ1.
Collapse
Affiliation(s)
- Anna Gorąca
- Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, Łódź, Poland.
| | - Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Łódź, Poland
| | - Beata Skibska
- Department of Applied Pharmacy, Department of Pharmacy, Medical University of Lodz, Łódź, Poland
| |
Collapse
|