1
|
Abreu S, Lejeune C, David M, Chaminade P, Virolle MJ. Impact of the Deletion of Genes of the Nitrogen Metabolism on Triacylglycerol, Cardiolipin and Actinorhodin Biosynthesis in Streptomyces coelicolor. Microorganisms 2024; 12:1560. [PMID: 39203402 PMCID: PMC11356632 DOI: 10.3390/microorganisms12081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Since nitrogen limitation is known to be an important trigger of triacylglycerol (TAG) accumulation in most microorganisms, we first assessed the global lipid content of 21 strains derived from Streptomyces coelicolor M145 deleted for genes involved in nitrogen metabolism. Seven of these strains deleted for genes encoding proteins involved in polyamine (GlnA2/SCO2241, GlnA3/SCO6962, GlnA4/SCO1613), or protein (Pup/SCO1646) degradation, in the regulation of nitrogen metabolism (GlnE/SCO2234 and GlnK/SCO5584), or the global regulator DasR/SCO5231 that controls negatively the degradation of N-acetylglucosamine, a constituent of peptidoglycan, had a higher TAG content than the original strain, whereas five of these strains (except the glnA2 and pup mutants) had a lower cardiolipin (CL) content. The production of the blue polyketide actinorhodin (ACT) was totally abolished in the dasR mutant in both Pi conditions, whereas the deletion of pup, glnA2, glnA3, and glnA4 was correlated with a significant increase in total ACT production, but mainly in Pi limitation. Unexpectedly, ACT production was strongly reduced in the glnA3 mutant in Pi proficiency. Altogether, our data suggest that high TAG and ACT biosynthesis and low CL biosynthesis might all contribute to the lowering of oxidative stress resulting from nitrogen limitation or from other causes.
Collapse
Affiliation(s)
- Sonia Abreu
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Michelle David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Pierre Chaminade
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| |
Collapse
|
2
|
Sah SK, Fan J, Blanford J, Shanklin J, Xu C. Physiological Functions of Phospholipid:Diacylglycerol Acyltransferases. PLANT & CELL PHYSIOLOGY 2024; 65:863-871. [PMID: 37702708 DOI: 10.1093/pcp/pcad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Triacylglycerol (TAG) is among the most energy dense storage forms of reduced carbon in living systems. TAG metabolism plays critical roles in cellular energy balance, lipid homeostasis, cell growth and stress responses. In higher plants, microalgae and fungi, TAG is assembled by acyl-CoA-dependent and acyl-CoA-independent pathways catalyzed by diacylglycerol (DAG) acyltransferase and phospholipid:DAG acyltransferase (PDAT), respectively. This review contains a summary of the current understanding of the physiological functions of PDATs. Emphasis is placed on their role in lipid remodeling and lipid homeostasis in response to abiotic stress or perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
3
|
Narayanasamy R, Usharani D, Rajasekharan R. Elucidating the functional role of human ABHD16B lipase in regulating triacylglycerol mobilization and membrane lipid synthesis in Saccharomyces cerevisiae. Chem Phys Lipids 2024; 258:105353. [PMID: 37944658 DOI: 10.1016/j.chemphyslip.2023.105353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Lipids are essential biological macromolecules that play a pivotal role in various physiological processes and cellular homeostasis. ABHD16B, a member of the α/β-hydrolase domain (ABHD) superfamily protein, has emerged as a potential key regulator in lipid metabolism. However, the precise role of human ABHD16B in lipid metabolism remains unclear. In this study, we reported the overexpression of ABHD16B in Saccharomyces cerevisiae to determine its physiological relevance in lipid metabolism. Through in vivo [14C]acetate labeling experiments, we observed that overexpression of ABHD16B causes a decrease in cellular triacylglycerol (TAG) levels and a concurrent increase in phospholipid synthesis in wild-type cells. Mass spectrometry (LC-MS/MS) analysis further corroborated these findings, showing a significant decrease in TAGs with a carbon chain length of 48 and an increase in major phospholipid species, specifically 34:2, upon overexpression of ABHD16B. Confocal microscopy analysis revealed a reduction in the number of lipid droplets in strains overexpressing ABHD16B, consistent with the observed decrease in neutral lipids. Additionally, qRT-PCR analysis indicated a high phospholipid synthetic activity of ABHD16B and a potential decrease in TAG levels in wild-type yeast, possibly due to upregulation of endogenous TAG hydrolytic enzymes, as confirmed using 3tglsΔ mutant strain. Furthermore, GC-MS analysis revealed significant modifications in fatty acid composition upon ABHD16B overexpression. Collectively, our results underscore the influence of ABHD16B overexpression on TAG levels, phospholipid synthesis, lipid droplet dynamics, and fatty acid composition. These findings reveal a complex interplay between TAG hydrolysis and phospholipid synthesis, highlighting the critical involvement of ABHD16B in lipid homeostasis and providing further insights into its regulatory function in cellular lipid metabolism.
Collapse
Affiliation(s)
- Raja Narayanasamy
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dandamudi Usharani
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ram Rajasekharan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India.
| |
Collapse
|
4
|
Bothra A, Arumugam P, Panchal V, Menon D, Srivastava S, Shankaran D, Nandy A, Jaisinghani N, Singh A, Gokhale RS, Gandotra S, Rao V. Phospholipid homeostasis, membrane tenacity and survival of Mtb in lipid rich conditions is determined by MmpL11 function. Sci Rep 2018; 8:8317. [PMID: 29844505 PMCID: PMC5974182 DOI: 10.1038/s41598-018-26710-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 05/18/2018] [Indexed: 11/09/2022] Open
Abstract
The mycobacterial cell wall is a chemically complex array of molecular entities that dictate the pathogenesis of Mycobacterium tuberculosis. Biosynthesis and maintenance of this dynamic entity in mycobacterial physiology is still poorly understood. Here we demonstrate a requirement for M. tuberculosis MmpL11 in the maintenance of the cell wall architecture and stability in response to surface stress. In the presence of a detergent like Tyloxapol, a mmpL11 deletion mutant suffered from a severe growth attenuation as a result of altered membrane polarity, permeability and severe architectural damages. This mutant failed to tolerate permissible concentrations of cis-fatty acids suggesting its increased sensitivity to surface stress, evident as smaller colonies of the mutant outgrown from lipid rich macrophage cultures. Additionally, loss of MmpL11 led to an altered cellular fatty acid flux in the mutant: reduced incorporation into membrane cardiolipin was associated with an increased flux into the cellular triglyceride pool. This increase in storage lipids like triacyl glycerol (TAG) was associated with the altered metabolic state of higher dormancy-associated gene expression and decreased sensitivity to frontline TB drugs. This study provides a detailed mechanistic insight into the function of mmpL11 in stress adaptation of mycobacteria.
Collapse
Affiliation(s)
- Ankur Bothra
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Vipul Panchal
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dilip Menon
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sonali Srivastava
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Deepthi Shankaran
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ananya Nandy
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Archana Singh
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Rajesh S Gokhale
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, CSIR-Central Road Research Institute, New Delhi, India.,National Institute of Immunology, New Delhi, India
| | - Sheetal Gandotra
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, CSIR-Central Road Research Institute, New Delhi, India
| | - Vivek Rao
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India. .,Academy of Scientific and Innovative Research, CSIR-Central Road Research Institute, New Delhi, India.
| |
Collapse
|