1
|
Heriz MH, Mahmood AAR, Yasin SR, Saleh KM, AlSakhen MF, Kanaan SI, Himsawi N, Saleh AM, Tahtamouni LH. Synthesis, docking study, and antitumor evaluation of benzamides and oxadiazole derivatives of 3-phenoxybenzoic acid as VEGFR-2 inhibitors. Drug Dev Res 2024; 85:e22186. [PMID: 38643351 DOI: 10.1002/ddr.22186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
Current chemotherapeutic agents have several limitations, including lack of selectivity, the development of undesirable side effects, and chemoresistance. As a result, there is an unmet need for the development of novel small molecules with minimal side effects and the ability to specifically target tumor cells. A new series of 3-phenoxybenzoic acid derivatives, including 1,3,4-oxadiazole derivatives (4a-d) and benzamides derivatives (5a-e) were synthesized; their chemical structures were confirmed by Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass spectra; and various physicochemical properties were determined. The antiproliferative activities of the new derivatives were evaluated by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Three compounds (4b, 4c, and 4d) exhibited cytotoxicity against two of the three cell lines tested, five compounds (3, 4a, 5a, 5b, and 5e) were toxic to one cell line, while two compounds (5c and 5d) were not cytotoxic to any of the three cell lines tested in the current study. Based on docking scores, MTT assay findings, and vascular endothelial growth factor receptor 2 (VEGFR-2) kinase activity data, Compound 4d was selected for further biological investigation. Flow cytometry was used to determine the mode of cell death (apoptosis vs. necrosis) and the effect on cell cycle progression. Compound 4d arrested HepG2 hepatocellular carcinoma cells in the G2/M phase and activated both the intrinsic and extrinsic apoptosis pathways. In conclusion, Compound 4d has shown promising results for future research as a potent VEGFR-2 tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Mohammad H Heriz
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Ammar A R Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Salem R Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Khaled M Saleh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mai F AlSakhen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sana I Kanaan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Epidemiological Surveillance Unit, Aweash El-Hagar Family Medicine Center, MOHP, Mansoura, Egypt
| | - Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Choi Y, Yu SR, Lee Y, Na AY, Lee S, Heitman J, Seo R, Lee HS, Lee JS, Bahn YS. Casein kinase 2 complex: a central regulator of multiple pathobiological signaling pathways in Cryptococcus neoformans. mBio 2024; 15:e0327523. [PMID: 38193728 PMCID: PMC10865844 DOI: 10.1128/mbio.03275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The casein kinase 2 (CK2) complex has garnered extensive attention over the past decades as a potential therapeutic target for diverse human diseases, including cancer, diabetes, and obesity, due to its pivotal roles in eukaryotic growth, differentiation, and metabolic homeostasis. While CK2 is also considered a promising antifungal target, its role in fungal pathogens remains unexplored. In this study, we investigated the functions and regulatory mechanisms of the CK2 complex in Cryptococcus neoformans, a major cause of fungal meningitis. The cryptococcal CK2 complex consists of a single catalytic subunit, Cka1, and two regulatory subunits, Ckb1 and Ckb2. Our findings show that Cka1 plays a primary role as a protein kinase, while Ckb1 and Ckb2 have major and minor regulatory functions, respectively, in growth, cell cycle control, morphogenesis, stress response, antifungal drug resistance, and virulence factor production. Interestingly, triple mutants lacking all three subunits (cka1Δ ckb1Δ ckb2Δ) exhibited more severe phenotypic defects than the cka1Δ mutant alone, suggesting that Ckb1/2 may have Cka1-independent functions. In a murine model of systemic cryptococcosis, cka1Δ and cka1Δ ckb1Δ ckb2Δ mutants showed severely reduced virulence. Transcriptomic, proteomic, and phosphoproteomic analyses further revealed that the CK2 complex controls a wide array of effector proteins involved in transcriptional regulation, cell cycle control, nutrient metabolisms, and stress responses. Most notably, CK2 disruption led to dysregulation of key signaling cascades central to C. neoformans pathogenicity, including the Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin signaling pathways. In summary, our study provides novel insights into the multifaceted roles of the fungal CK2 complex and presents a compelling case for targeting it in the development of new antifungal drugs.IMPORTANCEThe casein kinase 2 (CK2) complex, crucial for eukaryotic growth, differentiation, and metabolic regulation, presents a promising therapeutic target for various human diseases, including cancer, diabetes, and obesity. Its potential as an antifungal target is further highlighted in this study, which explores CK2's functions in C. neoformans, a key fungal meningitis pathogen. The CK2 complex in C. neoformans, comprising the Cka1 catalytic subunit and Ckb1/2 regulatory subunits, is integral to processes like growth, cell cycle, morphogenesis, stress response, drug resistance, and virulence. Our findings of CK2's role in regulating critical signaling pathways, including Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin, underscore its importance in C. neoformans pathogenicity. This study provides valuable insights into the fungal CK2 complex, reinforcing its potential as a target for novel antifungal drug development and pointing out a promising direction for creating new antifungal agents.
Collapse
Affiliation(s)
- Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong-Ryong Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yujin Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ann-Yae Na
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ran Seo
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do, South Korea
| | - Han-Seung Lee
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do, South Korea
| | | | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
3
|
Nipun VB, Amin KA. Recent Advances in Protein Kinase CK2, a Potential Therapeutic Target in Cancer. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:919-931. [DOI: 10.1134/s1068162022050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- V. B. Nipun
- Cancer Research Center, Shantou University Medical Collage, Shantou, Guangdong, 515041, PR China
- Department of Chemistry, Faculty of Science, University of Imam Abdulrahman Bin Faisal university, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - K. A. Amin
- Department of Chemistry, Faculty of Science, University of Imam Abdulrahman Bin Faisal university, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal university, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
4
|
Pulakuntla S, Lokhande KB, Padmavathi P, Pal M, Swamy KV, Sadasivam J, Singh SA, Aramgam SL, Reddy VD. Mutational analysis in international isolates and drug repurposing against SARS-CoV-2 spike protein: molecular docking and simulation approach. Virusdisease 2021; 32:690-702. [PMID: 34307771 PMCID: PMC8282177 DOI: 10.1007/s13337-021-00720-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023] Open
Abstract
The novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is spreading, as the causative pathogen of coronavirus disease-19 (COVID-19). It has infected more than 1.65 billion people all over the world since it was discovered and reported 3.43 million deaths by mid of May 2021. SARS-CoV-2 enters the host cell by binding to viral surface glycoprotein (S protein) with human ACE2 (angiotensin-converting enzyme2). Spike protein (contains S1 and S2 sub-domains) molecular interaction with the host cells is considered as a major step in the viral entry and disease initiation and progression and this identifies spike protein as a promising therapeutic target against antiviral drugs. Currently, there are no efficient antiviral drugs for the prevention of COVID-19 infection. In this study, we have analyzed global 8719 spike protein sequences from patients infected with SAR-CoV-2. These SAR-CoV-2 genome sequences were downloaded from the GISAID database. By using an open reading frame (ORF) tool we have identified the spike protein sequence. With these, all spike protein amino acid sequences are subjected to multiple sequence alignment (MSA) with Wuhan strain spike protein sequence as a query sequence, and it shows all SAR-CoV strain spike proteins are 99.8% identical. In the mutational analysis, we found 639 mutations in the spike protein sequence of SARS-CoV-2 and identified/highlighted 20 common mutations L5F, T22I, T29I, H49Y, L54F, V90F, S98F, S221L, S254F, V367F, A520S, T572I, D614G, H655Y, P809S, A879S, D936Y, A1020S, A1078S, and H1101Y. Further, we have analyzed the crystal structure of the 2019-nCoV chimeric receptor-binding complex with ACE2 (PDB ID: 6VW1) as a major target protein. The spike receptor binding protein (RBD) used as target region for our studies with FDA-approved drugs for repurposing, and identified few anti-SARS-CoV2 potential drugs (Silmitasertib, AC-55541, Merimepodib, XL413, AZ3451) based on their docking score and binding mode calculations expected to strongly bind to motifs of ACE2 receptor and may show impart relief in COVID-19 patients.
Collapse
Affiliation(s)
- Swetha Pulakuntla
- Department of Biochemistry, REVA University, Bangalore, Karnataka 560064 India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra 411033 India
| | - Pannuru Padmavathi
- DR Biosciences, Research & Development Unit, Bettahalasur, Bangalore, 562157 India
| | - Meena Pal
- Department of Molecular Biology, National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh 20130 India
| | - Kakumani Venkateswara Swamy
- MIT School of Bioengineering Science and Research, MIT Art Design and Technology University, Pune, Maharashtra 412202 India
| | - Jayashree Sadasivam
- Department of Biochemistry, REVA University, Bangalore, Karnataka 560064 India
| | - Shri Abhiav Singh
- Department of ISRM, Indian Council of Medical Research, New Delhi, 110029 India
| | - Sree Latha Aramgam
- Department of Biochemistry, REVA University, Bangalore, Karnataka 560064 India
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30329 USA
| | | |
Collapse
|
5
|
Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, Chen HW, Chang GC, Chang YL, Wu CT, Lin MW, Hsieh MS, Wang YT, Chen YR, Jonassen I, Ghavidel FZ, Lin ZS, Lin KT, Chen CW, Sheu PY, Hung CT, Huang KC, Yang HC, Lin PY, Yen TC, Lin YW, Wang JH, Raghav L, Lin CY, Chen YS, Wu PS, Lai CT, Weng SH, Su KY, Chang WH, Tsai PY, Robles AI, Rodriguez H, Hsiao YJ, Chang WH, Sung TY, Chen JS, Yu SL, Choudhary JS, Chen HY, Yang PC, Chen YJ. Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2021; 182:226-244.e17. [PMID: 32649875 DOI: 10.1016/j.cell.2020.06.012] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Tai Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mong-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tai Wang
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Inge Jonassen
- Computational Biology Unit (CBU), Informatics Department, University of Bergen, Bergen, Norway
| | | | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ching-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Sheu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Hao-Chin Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ta-Chi Yen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Bioinformatics Program, Taiwan International Graduate Program, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yan-Si Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Pei-Shan Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Ting Lai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Yan Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsin Chang
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Abstract
Fungal infections with increasing resistance to conventional therapies are a growing concern. Candida albicans is a major opportunistic yeast responsible for mucosal and invasive infections. Targeting the initial step of the infection process (i.e., C. albicans adhesion to the host cell) is a promising strategy. A wide variety of molecules can interfere with adhesion processes via an assortment of mechanisms. Herein, we focus on how small molecules disrupt biosynthesis of fungal cell wall components and membrane structure, prevent the localization of GPI-anchor proteins, inhibit production of enzymes involved in adhesion, downregulate genes encoding adhesins and competitively inhibit receptor interactions. As a result, adhesion of C. albicans to host cells is reduced, paving the way to new classes of antifungal agents.
Collapse
|
7
|
Kröger L, Daniliuc CG, Ensan D, Borgert S, Nienberg C, Lauwers M, Steinkrüger M, Jose J, Pietsch M, Wünsch B. Synthesis and SAR of Tetracyclic Inhibitors of Protein Kinase CK2 Derived from Furocarbazole W16. ChemMedChem 2020; 15:871-881. [PMID: 32168422 PMCID: PMC7418559 DOI: 10.1002/cmdc.202000040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Indexed: 12/16/2022]
Abstract
The serine/threonine kinase CK2 modulates the activity of more than 300 proteins and thus plays a crucial role in various physiological and pathophysiological processes including neurodegenerative disorders of the central nervous system and cancer. The enzymatic activity of CK2 is controlled by the equilibrium between the heterotetrameric holoenzyme CK2α2β2 and its monomeric subunits CK2α and CK2β. A series of analogues of W16 ((3aR,4S,10S,10aS)‐4‐{[(S)‐4‐benzyl‐2‐oxo‐1,3‐oxazolidin‐3‐yl]carbonyl}‐10‐(3,4,5‐trimethoxyphenyl)‐4,5,10,10a‐tetrahydrofuro[3,4‐b]carbazole‐1,3(3aH)‐dione ((+)‐3
a)) was prepared in an one‐pot, three‐component Levy reaction. The stereochemistry of the tetracyclic compounds was analyzed. Additionally, the chemically labile anhydride structure of the furocarbazoles 3 was replaced by a more stable imide (9) and N‐methylimide (10) substructure. The enantiomer (−)‐3
a (Ki=4.9 μM) of the lead compound (+)‐3
a (Ki=31 μM) showed a more than sixfold increased inhibition of the CK2α/CK2β interaction (protein‐protein interaction inhibition, PPII) in a microscale thermophoresis (MST) assay. However, (−)‐3
a did not show an increased enzyme inhibition of the CK2α2β2 holoenzyme, the CK2α subunit or the mutated CK2α′ C336S subunit in the capillary electrophoresis assay. In the pyrrolocarbazole series, the imide (−)‐9
a (Ki=3.6 μM) and the N‐methylimide (+)‐10
a (Ki=2.8 μM) represent the most promising inhibitors of the CK2α/CK2β interaction. However, neither compound could inhibit enzymatic activity. Unexpectedly, the racemic tetracyclic pyrrolocarbazole (±)‐12, with a carboxy moiety in the 4‐position, displays the highest CK2α/CK2β interaction inhibition (Ki=1.8 μM) of this series of compounds.
Collapse
Affiliation(s)
- Lukas Kröger
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 8149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Deeba Ensan
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 8149, Münster, Germany
| | - Sebastian Borgert
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 8149, Münster, Germany
| | - Christian Nienberg
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 8149, Münster, Germany
| | - Miriam Lauwers
- Medizinische Fakultät, Universität Köln, Gleueler Straße 24, 50931, Köln, Germany
| | - Michaela Steinkrüger
- Medizinische Fakultät, Universität Köln, Gleueler Straße 24, 50931, Köln, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 8149, Münster, Germany
| | - Markus Pietsch
- Medizinische Fakultät, Universität Köln, Gleueler Straße 24, 50931, Köln, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 8149, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Waldeyerstraße 15, 48149, Münster, Germany
| |
Collapse
|
8
|
Rangasamy L, Ortín I, Zapico JM, Coderch C, Ramos A, de Pascual-Teresa B. New Dual CK2/HDAC1 Inhibitors with Nanomolar Inhibitory Activity against Both Enzymes. ACS Med Chem Lett 2020; 11:713-719. [PMID: 32435375 DOI: 10.1021/acsmedchemlett.9b00561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
Four potent CK2 inhibitors derived from CX-4945 are described. They also provided nanomolar activity against HDAC1, therefore having promising utility as dual-target agents for cancer. The linker length between the hydroxamic acid and the CX-4945 scaffold plays an important role in dictating balanced activity against the targeted enzymes. The seven-carbon linker (compound 15c) was optimal for inhibition of both CK2 and HDAC1. Remarkably, 15c showed 3.0 and 3.5 times higher inhibitory activity than the reference compounds CX-4945 (against CK2) and SAHA (against HDAC1), respectively. Compound 15c exhibited micromolar activity in cell-based cytotoxic assays against multiple cell lines.
Collapse
Affiliation(s)
- Loganathan Rangasamy
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - Irene Ortín
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - José María Zapico
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - Claire Coderch
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - Ana Ramos
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| |
Collapse
|
9
|
ShiYang X, Miao Y, Cui Z, Lu Y, Zhou C, Zhang Y, Xiong B. Casein kinase 2 modulates the spindle assembly checkpoint to orchestrate porcine oocyte meiotic progression. J Anim Sci Biotechnol 2020; 11:31. [PMID: 32292585 PMCID: PMC7140493 DOI: 10.1186/s40104-020-00438-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background CK2 (casein kinase 2) is a serine/threonine-selective protein kinase that has been involved in a variety of cellular processes such as DNA repair, cell cycle control and circadian rhythm regulation. However, its functional roles in oocyte meiosis have not been fully determined. Results We report that CK2 is essential for porcine oocyte meiotic maturation by regulating spindle assembly checkpoint (SAC). Immunostaining and immunoblotting analysis showed that CK2 was constantly expressed and located on the chromosomes during the entire oocyte meiotic maturation. Inhibition of CK2 activity by its selective inhibitor CX-4945 impaired the first polar body extrusion and arrested oocytes at M I stage, accompanied by the presence of BubR1 at kinetochores, indicative of activated SAC. In addition, we found that spindle/chromosome structure was disrupted in CK2-inhibited oocytes due to the weakened microtubule stability, which is a major cause resulting in the activation of SAC. Last, we found that the level DNA damage as assessed by γH2A.X staining was considerably elevated when CK2 was inhibited, suggesting that DNA damage might be another critical factor leading to the SAC activation and meiotic failure of oocytes. Conclusions Our findings demonstrate that CK2 promotes the porcine oocyte maturation by ensuring normal spindle assembly and DNA damage repair.
Collapse
Affiliation(s)
- Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
10
|
Ong BX, Yoo Y, Han MG, Park JB, Choi MK, Choi Y, Shin JS, Bahn YS, Cho HS. Structural analysis of fungal pathogenicity-related casein kinase α subunit, Cka1, in the human fungal pathogen Cryptococcus neoformans. Sci Rep 2019; 9:14398. [PMID: 31591414 PMCID: PMC6779870 DOI: 10.1038/s41598-019-50678-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/16/2019] [Indexed: 12/28/2022] Open
Abstract
CK2α is a constitutively active and highly conserved serine/threonine protein kinase that is involved in the regulation of key cellular metabolic pathways and associated with a variety of tumours and cancers. The most well-known CK2α inhibitor is the human clinical trial candidate CX-4945, which has recently shown to exhibit not only anti-cancer, but also anti-fungal properties. This prompted us to work on the CK2α orthologue, Cka1, from the pathogenic fungus Cryptococcus neoformans, which causes life-threatening systemic cryptococcosis and meningoencephalitis mainly in immunocompromised individuals. At present, treatment of cryptococcosis remains a challenge due to limited anti-cryptococcal therapeutic strategies. Hence, expanding therapeutic options for the treatment of the disease is highly clinically relevant. Herein, we report the structures of Cka1-AMPPNP-Mg2+ (2.40 Å) and Cka1-CX-4945 (2.09 Å). Structural comparisons of Cka1-AMPPNP-Mg2+ with other orthologues revealed the dynamic architecture of the N-lobe across species. This may explain for the difference in binding affinities and deviations in protein-inhibitor interactions between Cka1-CX-4945 and human CK2α-CX-4945. Supporting it, in vitro kinase assay demonstrated that CX-4945 inhibited human CK2α much more efficiently than Cka1. Our results provide structural insights into the design of more selective inhibitors against Cka1.
Collapse
Affiliation(s)
- Belinda X Ong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Youngki Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myeong Gil Han
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jun Bae Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Ghosh KC, Duttagupta I, Bose C, Banerjee P, Gayen AK, Sinha S. Synthesis and anticancer activities of proline-containing cyclic peptides and their linear analogs and congeners. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1550201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Keshab Ch Ghosh
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Indranil Duttagupta
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Chandra Bose
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Priyanjalee Banerjee
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | - Surajit Sinha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| |
Collapse
|
12
|
Janeczko M, Kubiński K, Martyna A, Muzyczka A, Boguszewska-Czubara A, Czernik S, Tokarska-Rodak M, Chwedczuk M, Demchuk OM, Golczyk H, Masłyk M. 1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit formation of hyphae and show no toxicity toward zebrafish embryos. J Med Microbiol 2018; 67:598-609. [PMID: 29461185 DOI: 10.1099/jmm.0.000700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE In this study, we applied various assays to find new activities of 1,4-naphthoquinone derivatives for potential anti-Candida albicans applications. METHODOLOGY These assays determined (a) the antimicrobial effect on growth/cell multiplication in fungal cultures, (b) the effect on formation of hyphae and biofilm, (c) the influence on cell membrane integrity, (d) the effect on cell morphology using atomic force microscopy, and (e) toxicity against zebrafish embryos. We have demonstrated the activity of these compounds against different Candida species and clinical isolates of C. albicans. KEY FINDINGS 1,4-Naphthoquinones significantly affected fungal strains at 8-250 mg l-1 of MIC. Interestingly, at concentrations below MICs, the chemicals showed effectiveness in inhibition of hyphal formation and cell aggregation in Candida. Of note, atomic force microscopy (AFM) analysis revealed an influence of the compounds on cell morphological properties. However, at low concentrations (0.8-31.2 mg l-1), it did not exert any evident toxic effects on zebrafish embryos. CONCLUSIONS Our research has evidenced the effectiveness of 1,4-naphthoquinones as potential anti-Candida agents.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Angelika Muzyczka
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, ul. Chodźki 4A, 20-093, Lublin, Poland
| | - Sławomir Czernik
- Innovation Research Centre, Pope John Paul II State School of Higher Education in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
| | - Małgorzata Tokarska-Rodak
- Institute of Health Sciences, Pope John Paul II State School of Higher Education in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
| | - Marta Chwedczuk
- Innovation Research Centre, Pope John Paul II State School of Higher Education in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
| | - Oleg M Demchuk
- Organic Chemistry Department, Faculty of Chemistry, Maria Curie-Skłodowska University, ul. Gliniana 33, 20-614 Lublin, Poland
| | - Hieronim Golczyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| |
Collapse
|
13
|
Alternative Splicing as a Target for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19020545. [PMID: 29439487 PMCID: PMC5855767 DOI: 10.3390/ijms19020545] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing is a key mechanism determinant for gene expression in metazoan. During alternative splicing, non-coding sequences are removed to generate different mature messenger RNAs due to a combination of sequence elements and cellular factors that contribute to splicing regulation. A different combination of splicing sites, exonic or intronic sequences, mutually exclusive exons or retained introns could be selected during alternative splicing to generate different mature mRNAs that could in turn produce distinct protein products. Alternative splicing is the main source of protein diversity responsible for 90% of human gene expression, and it has recently become a hallmark for cancer with a full potential as a prognostic and therapeutic tool. Currently, more than 15,000 alternative splicing events have been associated to different aspects of cancer biology, including cell proliferation and invasion, apoptosis resistance and susceptibility to different chemotherapeutic drugs. Here, we present well established and newly discovered splicing events that occur in different cancer-related genes, their modification by several approaches and the current status of key tools developed to target alternative splicing with diagnostic and therapeutic purposes.
Collapse
|