1
|
Yoodee S, Peerapen P, Boonmark W, Thongboonkerd V. The inhibitory effects of proteins secreted from trigonelline-treated renal cells on calcium oxalate crystals in vitro: Implications for kidney stone prevention. Biomed Pharmacother 2025; 186:118003. [PMID: 40132401 DOI: 10.1016/j.biopha.2025.118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Trigonelline is a bioactive alkaloid with therapeutic effects on various kidney diseases. Although previous studies have implicated its potential to prevent kidney stone disease (KSD), its anti-lithiatic mechanisms were poorly understood and thus addressed herein. Secretome (a set of secreted proteins) was collected and purified from MDCK renal cells treated with 100 µM trigonelline (termed "trigonelline-treated secretome") to examine its effects on calcium oxalate (CaOx) crystals compared with that derived from untreated cells (termed "control secretome"). Trigonelline-treated secretome significantly reduced CaOx crystal size, number and abundance during initial crystallization, and also inhibited crystal growth, aggregation and adhesion to renal cells. Quantitative proteomics using nanoLC-ESI-Qq-TOF tandem mass spectrometry revealed 46 differentially secreted (11 decreased and 35 increased) proteins, mainly from extracellular compartments, in the trigonelline-treated secretome. While most of the identified proteins were acidic, significantly increased secreted proteins had an increased proportion of basic proteins, resulting in a slightly greater isoelectric point. In concordance, significantly increased secreted proteins had a greater proportion of positively charged amino acids as compared with significantly decreased secreted proteins. However, proportions of aromatic, polar, non-polar, and negatively charged amino acids were comparable. In summary, we report herein direct evidence of the inhibitory effects of trigonelline against CaOx crystallization, growth, aggregation and adhesion to renal cells via the altered secreted proteins that show some unique physicochemical properties when the increased secreted proteins were compared with the decreased compartments. These data may lead to a better understanding of mechanisms underlying the anti-lithiatic effects of trigonelline to prevent KSD.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
2
|
He Y, Luo J, Xie H. High glucose-induced alternative splicing of MEF2D in macrophages promotes vascular chronic inflammation in type 2 diabetes mellitus by mediating M1 macrophage polarization. Biochem Biophys Res Commun 2025; 758:151657. [PMID: 40120344 DOI: 10.1016/j.bbrc.2025.151657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVES To investigate the effects of a high-glucose environment in type 2 diabetes mellitus (T2DM) on Myocyte enhancer factor 2d (MEF2D) selective splicing and its impact on the disease process and mechanism. METHODS Human monocyte (THP-1) cells were induced into macrophages with phorbol 12-myristate 13-acetate (PMA), and treated with high glucose for 24 h. PCR confirmed MEF2D splicing products. MEF2D or MEF2D-AS overexpression vectors were transfected into macrophages, and ELISA detected inflammatory factors; flow cytometry analyzed MI/M2 phenotypes; and levels of LC3, PI3K, and LAMP2 were measured. Autophagic flux detection; co-immunoprecipitation detected MEF2D and KCNMA1 interaction; WB and RT-qPCR assessed KCNMA1 expression. Macrophages co-cultured with endothelial cells were analyzed by ELISA for vascular inflammation factors MMP-9, Cys-C, and hsCRP. RESULTS High glucose-induced alternative splicing of MEF2D at 86-132 aa. MEF2D-AS group showed higher inflammatory factors, increased M1 phenotype, lower autophagy gene expression, and higher vascular inflammation factors compared to MEF2D group. Autophagy activator Rapamycin or KCNMA1 overexpression reversed these effects. MEF2D targeted KCNMA1, and MEF2D-AS overexpression led to decreased KCNMA1, increased inflammatory factors, M1 polarization, autophagy inhibition, and higher vascular inflammation factors. CONCLUSION High glucose induces MEF2D alternative splicing in macrophages, inhibiting autophagy and promoting M1 polarization via KCNMA1 down-regulation, thus promoting chronic inflammation in T2DM vessels.
Collapse
Affiliation(s)
- Yuqi He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Luo
- Department of Clinical Laboratory Medicine, Hengyang Chinese Medicine Hospital, Hengyang, 421009, Hunan, China
| | - Haitao Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
5
|
Noonin C, Thongboonkerd V. Curcumin prevents high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation via mitigating intracellular free radicals and TGF-β secretion. Biomed Pharmacother 2024; 174:116536. [PMID: 38569274 DOI: 10.1016/j.biopha.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of kidney failure. However, the involvement of renal fibroblasts and their communications with renal epithelial cells during DKD remain poorly understood. We investigated the potential role of renal proximal tubular epithelial cells (PTECs) in renal fibroblast activation that might lead to DKD. Additionally, the protective effects of curcumin, a known antioxidant, against renal fibroblast activation induced by high glucose-treated PTECs were investigated. Secretome was collected from HK-2 PTECs under normal glucose, high glucose, high glucose pretreated/cotreated with curcumin, or osmotic control condition for 24 h. Such secretome was then used to treat BHK-21 renal fibroblasts for 24 h. BHK-21 cells treated with high glucose-induced secretome had increased levels of fibroblast activation markers, including spindle index, F-actin, α-smooth muscle actin (α-SMA), fibronectin, collagen I, matrix metalloproteinase-2 (MMP-2) and MMP-9, as compared with normal glucose and osmotic control conditions. However, all these increases were successfully mitigated by curcumin. In addition, high glucose markedly increased intracellular reactive oxygen species (ROS) and transforming growth factor-β (TGF-β) secretion, but did not affect the secretion of platelet-derived growth factor A (PDGFA) and interleukin-1β (IL-1β), in HK-2 renal cells as compared with normal glucose and osmotic control conditions. Both intracellular ROS and secreted TGF-β levels were successfully mitigated by curcumin. Therefore, curcumin prevents the high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation, at least in part, via mitigating intracellular ROS and TGF-β secretion.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
6
|
Noonin C, Itsaranawet T, Thongboonkerd V. Calcium oxalate crystal-induced secretome derived from proximal tubular cells, not that from distal tubular cells, induces renal fibroblast activation. Eur J Med Res 2023; 28:150. [PMID: 37031165 PMCID: PMC10082508 DOI: 10.1186/s40001-023-01109-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Kidney stone disease (KSD) is commonly accompanied with renal fibrosis, characterized by accumulation and reorganization of extracellular matrix (ECM). During fibrogenesis, resident renal fibroblasts are activated to become myofibroblasts that actively produce ECM. However, such fibroblast-myofibroblast differentiation in KSD remained unclear. Our present study thus examined effects of secreted products (secretome) derived from proximal (HK-2) vs. distal (MDCK) renal tubular cells exposed to calcium oxalate monohydrate (COM) crystals on activation of renal fibroblasts (BHK-21). METHODS HK-2 and MDCK cells were treated with 100 µg/ml COM crystals under serum-free condition for 16 h. In parallel, the cells maintained in serum-free medium without COM treatment served as the control. Secretome derived from culture supernatant of each sample was mixed (1:1) with fresh serum-free medium and then used for BHK-21 culture for another 24 h. RESULTS Analyses revealed that COM-treated-HK-2 secretome significantly induced proliferation, caused morphological changes, increased spindle index, and upregulated fibroblast-activation markers (F-actin, α-SMA and fibronectin) in BHK-21 cells. However, COM-treated-MDCK secretome had no significant effects on these BHK-21 parameters. Moreover, level of transforming growth factor-β1 (TGF-β1), a profibrotic factor, significantly increased in the COM-treated-HK-2 secretome but not in the COM-treated-MDCK secretome. CONCLUSIONS These data indicate, for the first time, that proximal and distal tubular epithelial cells exposed to COM crystals send different messages to resident renal fibroblasts. Only the secretome derived from proximal tubular cells, not that from the distal cells, induces renal fibroblast activation after their exposure to COM crystals. Such differential effects are partly due to TGF-β1 secretion, which is induced by COM crystals only in proximal tubular cells.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand
| | - Tanakorn Itsaranawet
- Biological Sciences Program, Mahidol University International College, Nakhon Pathom, 73170, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand.
| |
Collapse
|
7
|
Cho JH, Ju WS, Seo SY, Kim BH, Kim JS, Kim JG, Park SJ, Choo YK. The Potential Role of Human NME1 in Neuronal Differentiation of Porcine Mesenchymal Stem Cells: Application of NB-hNME1 as a Human NME1 Suppressor. Int J Mol Sci 2021; 22:ijms222212194. [PMID: 34830075 PMCID: PMC8619003 DOI: 10.3390/ijms222212194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- GreenBio Corp. Central Research, 201-19, Bubaljungand-ro, Bubal-eup, Icheon-si 17321, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
| | - Sang Young Seo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Bo Hyun Kim
- CHA Fertility Center Bundang, 59, Yatap-ro, Bundang-gu, Seongnam-si 13496, Korea;
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology, 181, Ipsin-gil, Jeongeup-si 56216, Korea;
| | - Jong-Geol Kim
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6087; Fax: +82-63-857-8837
| |
Collapse
|
8
|
Aluksanasuwan S, Plumworasawat S, Malaitad T, Chaiyarit S, Thongboonkerd V. High glucose induces phosphorylation and oxidation of mitochondrial proteins in renal tubular cells: A proteomics approach. Sci Rep 2020; 10:5843. [PMID: 32246012 PMCID: PMC7125224 DOI: 10.1038/s41598-020-62665-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction has been thought to play roles in the pathogenesis of diabetic nephropathy (DN). However, precise mechanisms underlying mitochondrial dysfunction in DN remained unclear. Herein, mitochondria were isolated from renal tubular cells after exposure to normal glucose (5.5 mM glucose), high glucose (25 mM glucose), or osmotic control (5.5 mM glucose + 19.5 mM mannitol) for 96 h. Comparative proteomic analysis revealed six differentially expressed proteins among groups that were subsequently identified by tandem mass spectrometry (nanoLC-ESI-ETD MS/MS) and confirmed by Western blotting. Several various types of post-translational modifications (PTMs) were identified in all of these identified proteins. Interestingly, phosphorylation and oxidation were most abundant in mitochondrial proteins whose levels were exclusively increased in high glucose condition. The high glucose-induced increases in phosphorylation and oxidation of mitochondrial proteins were successfully confirmed by various assays including MS/MS analyses. Moreover, high glucose also increased levels of phosphorylated ezrin, intracellular ATP and ROS, all of which could be abolished by a p38 MAPK inhibitor (SB239063), implicating a role of p38 MAPK-mediated phosphorylation in high glucose-induced mitochondrial dysfunction. These data indicate that phosphorylation and oxidation of mitochondrial proteins are, at least in part, involved in mitochondrial dysfunction in renal tubular cells during DN.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanyalak Malaitad
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
9
|
Ayala TS, Tessaro FHG, Jannuzzi GP, Bella LM, Ferreira KS, Martins JO. High Glucose Environments Interfere with Bone Marrow-Derived Macrophage Inflammatory Mediator Release, the TLR4 Pathway and Glucose Metabolism. Sci Rep 2019; 9:11447. [PMID: 31391499 PMCID: PMC6686006 DOI: 10.1038/s41598-019-47836-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Macrophages may be a crucial aspect of diabetic complications associated with the inflammatory response. In this study, we examined how hyperglycaemia, a common aspect of diabetes, modulates bone marrow-derived macrophages (BMDMs) under an inflammatory stimulus. To perform this study, BMDMs from non-diabetic and diabetic (60 mg/kg alloxan, i.v.) male C57BL/6 mice (CEUA/FCF/USP-488) were cultured under normal (5.5 mM) and high glucose (HG, 25 or 40 mM) conditions and stimulated or not stimulated with lipopolysaccharide (LPS, 100 ng/mL). Compared to the BMDMs from the normoglycaemic mice, the LPS-stimulated BMDMs from the diabetic mice presented reduced TLR4 expression on the cell surface, lower phagocytic capacity, and reduced secretion of NO and lactate but greater oxygen consumption and greater phosphorylation of p46 SAPK/JNK, p42 ERK MAPK, pAKT and pPKC-δ. When the BMDMs from the non-diabetic mice were cultured under high-glucose conditions and stimulated with LPS, TLR4 expression was reduced on the cell surface and NO and H2O2 levels were reduced. In contrast, the diabetic BMDMs cultured under high glucose conditions presented increased levels of lactate and reduced phosphorylation of AKT, PKC-δ and p46 SAPK/JNK but enhanced phosphorylation of the p46 subunit of SAPK/JNK after LPS stimulation. High glucose levels appear to modify macrophage behaviour, affecting different aspects of diabetic and healthy BMDMs under the same LPS stimulus. Thus, hyperglycaemia leaves a glucose legacy, altering the basal steady state of macrophages.
Collapse
Affiliation(s)
- Thais Soprani Ayala
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Fernando Henrique Galvão Tessaro
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Grasielle Pereira Jannuzzi
- Laboratory of Cellular Immunology and Biochemistry of Fungus and Protozoa, Department of Pharmaceutical Sciences Analysis, Federal University of São Paulo, São Paulo, Brazil
| | - Leonardo Mendes Bella
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Karen Spadari Ferreira
- Laboratory of Cellular Immunology and Biochemistry of Fungus and Protozoa, Department of Pharmaceutical Sciences Analysis, Federal University of São Paulo, São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil.
| |
Collapse
|