1
|
Vo HVT, Kim N, Lee HJ. Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation. FRONT BIOSCI-LANDMRK 2025; 30:24072. [PMID: 39862072 DOI: 10.31083/fbl24072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 01/27/2025]
Abstract
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment. Vitamins are an indispensable part of daily life, essential for optimal health and well-being. Beyond their recognized roles as essential nutrients, vitamins have increasingly garnered attention for their multifaceted functions within the machinery of cellular processes. In particular, vitamin Bs have emerged as a pivotal regulator within this intricate network, exerting profound effects on the functionality of metalloenzymes. Their ability to modulate metalloenzymes involved in crucial cellular pathways implicated in cancer progression presents a compelling avenue for therapeutic intervention. Key findings indicate that vitamin Bs can influence the activity and expression of metalloenzymes, thereby affecting processes such as DNA repair and cell signaling, which are critical in cancer development and progression. Understanding the mechanisms by which these coenzymes regulate metalloenzymes holds great promise for developing novel anticancer strategies. This review summarizes current knowledge on the interactions between vitamin Bs and metalloenzymes, highlighting their potential as anticancer agents and paving the way for innovative, cell-targeted cancer treatments.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
2
|
Lin F, Zhou W, Yuan X, Liu S, He Z. Mechanistic study of quercetin in the treatment of hepatocellular carcinoma with diabetes via MEK/ERK pathway. Int Immunopharmacol 2024; 142:113194. [PMID: 39305892 DOI: 10.1016/j.intimp.2024.113194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is a complex disease, further exacerbated by coexisting diabetes. With the rising incidence of HCC-diabetes cases, alternative treatment strategies are urgently needed. Traditional Chinese Medicine (TCM) offers promising options, and quercetin, a bioactive flavonoid, has shown significant antitumor and antidiabetic effects. This study aimed to investigate the efficacy of quercetin in treating HCC with diabetes using bioinformatics and network pharmacology. We constructed a prognostic model for HCC-diabetes using multivariate Cox proportional hazards regression and identified potential targets for quercetin by intersecting quercetin target genes with HCC-diabetes genes. Molecular docking and molecular dynamics simulations screened these potential targets, and in vitro experiments verified quercetin's targets and pathways. The results revealed a prediction model with four essential genes that effectively predict HCC prognosis in diabetic patients. IL6 and MMP9 were identified as potential targets of quercetin through molecular docking and dynamics simulations. In vitro experiments revealed that quercetin promotes apoptosis, inhibits cell proliferation, and suppresses epithelial-mesenchymal transition (EMT) in HepG2 cells under high-glucose conditions by reducing IL6 expression and inhibiting the MEK/ERK pathway. In summary, quercetin may delay the progression of HCC-diabetes by modulating IL6 to inhibit the MEK/ERK signaling pathway, thereby promoting apoptosis and inhibiting the proliferation and EMT of HepG2 cells.
Collapse
Affiliation(s)
- Feng Lin
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei 230032, China
| | - Weiguo Zhou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xiao Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei 230032, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Zhipeng He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
3
|
Mondal A, Das B, Karmakar S, Pani S, Khan S, Gupta P, Das Sarma J. Modulatory Role of Pantropic Cell Signaling Pathways in the Antimigratory and Antiproliferative Action of Triazole Chelated Iridium(III) Complexes in Cervical Cancer Cells. J Med Chem 2024; 67:20559-20570. [PMID: 39527836 DOI: 10.1021/acs.jmedchem.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the current study, the antimigratory and antiproliferative effect of three substituted triazole-chelated iridium(III) complexes Ir-TRN, Ir-TRH, and Ir-TRF were studied with special emphasis on modulation of P53 activity, a cell cycle regulator. ERK2/MAPK, another crucial cell signaling pathway protein, was also shown to play a crucial role in cell migration and proliferation. The complexes increase the ROS generation within the cell, further supporting apoptotic induction by exerting cellular oxidative stress. These metal complexes also affect ER stress by altering ERp29, an ER-resident chaperone, further inducing the process of apoptosis. The iridium(III) complexes restrict cervical cancer cell migration and proliferation by exerting pronounced effects as P53 activators and downregulation of ERK2/MAPK activity in cervical cancer cells. The underpinning mechanism of P53 and ERK2/MAPK activity in cervical cancer cells in the presence of iridium(III) complexes was studied in detail in this study, which paves the way for developing promising avenues for cancer therapeutics.
Collapse
Affiliation(s)
- Anushka Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Souvik Karmakar
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumili Pani
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Shrabani Khan
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
4
|
Ferrie RP, Fuselier T, Wimley WC. Cytosolic Delivery of Bioactive Cyclic Peptide Cargo by Spontaneous Membrane Translocating Peptides. ACS OMEGA 2024; 9:8179-8187. [PMID: 38405535 PMCID: PMC10882622 DOI: 10.1021/acsomega.3c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Cyclic peptides that inhibit protein-protein interactions have significant advantages over linear peptides and small molecules for modulating cellular signaling networks in cancer and other diseases. However, the permeability barrier of the plasma membrane remains a formidable obstacle to the development of cyclic peptides into applicable drugs. Here, we test the ability of a family of synthetically evolved spontaneous membrane translocating peptides (SMTPs) to deliver phalloidin, a representative bioactive cyclic peptide, to the cytosol of human cells in culture. Phalloidin does not enter cells spontaneously, but if delivered to the cytosol, it inhibits actin depolymerization. We thus use a wound-healing cell mobility assay to assess the biological activity of phalloidin conjugated to three SMTPs that we previously discovered. All three SMTPs can deliver phalloidin to the cell cytosol, and one does so at concentrations as low as 3 μM. Delivery occurs despite the fact that the SMTPs were originally selected based on membrane translocation with no cargo other than a small fluorescent dye. These results show that SMTPs are viable delivery vehicles for cyclic peptides, although their efficiency is moderate. Further, these results suggest that one additional generation of synthetic molecular evolution could be used to optimize SMTPs for the efficient delivery of any bioactive cyclic peptide into cells.
Collapse
Affiliation(s)
- Ryan P. Ferrie
- Department of Biochemistry
and Molecular Biology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - Taylor Fuselier
- Department of Biochemistry
and Molecular Biology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - William C. Wimley
- Department of Biochemistry
and Molecular Biology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
5
|
Shahzad A, Rink L, Wessels I. Regulation of matrix metalloproteinase-9 during monopoiesis and zinc deficiency by chromatin remodeling. J Trace Elem Med Biol 2023; 78:127162. [PMID: 37027894 DOI: 10.1016/j.jtemb.2023.127162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Matrix metalloproteinase-9 (MMP-9) cleaves various extracellular matrix proteins, hence significantly contributes to numerous physiological but also pathological processes. Monocytic differentiation is associated with increased MMP-9 gene expression. Interestingly, MMP-9 upregulation during monocytic differentiation is paralleled by a decline in intracellular zinc levels. Hence, an influence of zinc on the regulation of MMP-9 expression may exist. Although, previous studies suggest a vital role of zinc regarding MMP-9 activity, the possible relevance of zinc homeostasis during transcriptional regulation of MMP-9 for example via epigenetic mechanisms is rather unclear. AIM This study aims to find a correlation between zinc deficiency and MMP-9 transcriptional regulation, focusing on epigenetics as the possible mechanism behind zinc deficiency-induced changes. METHODS The effect of differentiation and zinc deficiency on MMP-9 expression and MMP9 promoter accessibility was investigated using the acute promyelocytic cell line NB4. Intracellular free zinc levels were detected by flow cytometry. MMP-9 gene expression was measured by real-time PCR and ELISA. Analysis of chromatin structures was done using chromatin accessibility by real-time PCR (CHART) assay. RESULTS During monocytic differentiation of NB4 cells, the decrease in intracellular zinc levels was paralleled by an increased production of MMP-9. Assessment of chromatin structure revealed increased accessibility of certain regions within the MMP-9 promoter in differentiated cells. Interestingly, upregulated activation-induced MMP-9 gene expression as well as a more accessible MMP-9 promoter were in zinc-deficient NB4 cells whereas zinc resupplementation reversed the effects. CONCLUSION These data demonstrate an important role of epigenetic mechanisms in regulating MMP-9 expression under zinc deficiency. This could provide an encouraging step to expand the research on using zinc for the treatment of various pathological conditions such as inflammatory, vascular and autoimmune diseases resulting from MMP-9 deregulation.
Collapse
Affiliation(s)
- Asad Shahzad
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
6
|
Peng J, Liu X, Li C, Gao M, Wang H. Sema4C modulates the migration of primary tumor-associated lymphatic endothelial cells via an ERK-mediated pathway. Exp Ther Med 2021; 22:1102. [PMID: 34504556 PMCID: PMC8383750 DOI: 10.3892/etm.2021.10535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Although lymphatic endothelial cells (LECs) serve a positive role in tumor lymphatic metastasis, the regulation of LECs undergoing migration similar to that of tumor cells remains poorly understood. A previous study revealed that semaphorin 4C (Sema4C) could be a marker of LECs in cervical cancer. Thus, the present study aimed to understand the mechanism via which Sema4C could promote the development of tumor-associated characteristics in LECs in cervical cancer. Primary tumor-associated LECs (TLECs) were distinguished from cervical cancer by flow cytometry. The promigratory ability was assessed using the Transwell assay. Lentivirus infection was used to alter the expression of Sema4C in TLECs. Confocal laser scanning was used to determine the infection efficiency of lentivirus infection. Sema4C/ERK/E-cadherin pathway was measured by reverse transcription-quantitative PCR and western blotting. The co-localization of Sema4C and the lymphatic marker lymphatic vessel endothelial hyaluronan receptor 1 was verified. Primary tumor-associated LECs (TLECs) were isolated from a mouse xenograft cervical tumor model. It was revealed that overexpressing Sema4C stimulated the migratory ability of TLECs, downregulated E-cadherin expression and stimulated ERK phosphorylation, whereas knocking down Sema4C had the opposite effects. The treatment of PD98059 (ERK inhibitor) blocked the pro-migratory ability of TLECs, which indicated a dependence on the ERK signaling pathway. It was identified that the Sema4C/ERK/E-cadherin pathway may be critical for the migration of TLECs, which may promote lymph node metastasis. Therefore, Sema4C could be a promising target for the treatment of cervical cancer with lymphatic metastasis.
Collapse
Affiliation(s)
- Jin Peng
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250001, P.R. China
| | - Xijiang Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Chengcheng Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250001, P.R. China
| | - Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250001, P.R. China
| | - Hongyan Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
7
|
Chang MM, Wu SZ, Yang SH, Wu CC, Wang CY, Huang BM. FGF9/FGFR1 promotes cell proliferation, epithelial-mesenchymal transition, M2 macrophage infiltration and liver metastasis of lung cancer. Transl Oncol 2021; 14:101208. [PMID: 34438248 PMCID: PMC8390529 DOI: 10.1016/j.tranon.2021.101208] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
FGF9 induced cell proliferation, EMT, migration, and invasion of mouse Lewis lung cancer (LLC) cells, in vitro. FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13) and reduced the expression of E-cadherin. FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with tumor growth, angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. The FGF9/LLC syngeneic animal model provides a useful tool for the mechanism studies of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.
Fibroblast growth factors 9 (FGF9) modulates cell proliferation, differentiation and motility for development and repair in normal cells. Abnormal activation of FGF9 signaling is associated with tumor progression in many cancers. Also, FGF9 may be an unfavorable prognostic indicator for non-small cell lung cancer patients. However, the effects and mechanisms of FGF9 in lung cancer remain elusive. In this study, we investigated the FGF9-induced effects and signal activation profiles in mouse Lewis lung carcinoma (LLC) in vitro and in vivo. Our results demonstrated that FGF9 significantly induced cell proliferation and epithelial-to-mesenchymal transition (EMT) phenomena (migration and invasion) in LLC cells. Mechanism-wise, FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13), and reduced the expression of E-cadherin. Moreover, in the allograft mouse model, intratumor injection of FGF9 to LLC-tumor bearing C57BL/6 mice enhanced LLC tumor growth which were the results of increased Ki67 expression and decreased cleaved caspase-3 expression compared to control groups. Furthermore, we have a novel finding that FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. In conclusion, FGF9 activated FAK, AKT, and ERK signaling through FGFR1 with induction of EMT to stimulate LLC tumorigenesis and hepatic metastasis. This novel FGF9/LLC allograft animal model may therefore be useful to study the mechanism of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, Republic of China
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China.
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40406, Taiwan, Republic of China.
| |
Collapse
|
8
|
Yang H, Xu Z, Peng Y, Wang J, Xiang Y. Integrin β4 as a Potential Diagnostic and Therapeutic Tumor Marker. Biomolecules 2021; 11:biom11081197. [PMID: 34439865 PMCID: PMC8394641 DOI: 10.3390/biom11081197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Integrin β4 (ITGβ4) is a class of transmembrane adhesion molecules composed of hemidesmosomes (HDs). Its unique long intracellular domain provides intricate signal transduction functions. These signal transduction effects are especially prominent in tumors. Many recent studies have shown that integrin β4 is differentially expressed in various tumors, and it plays a vital role in tumor invasion, proliferation, epithelial–mesenchymal transition, and angiogenesis. Therefore, we categorize the research related to integrin β4, starting from its structure and function in tumor tissues, and provide a basic description. Based on its structure and function, we believe that integrin β4 can be used as a tumor marker. In clinical practice, it is described as a diagnostic marker for the targeted treatment of cancer and will be helpful in the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Haoyu Yang
- School of Basic Medical Science, Central South University, Changsha 410013, China; (H.Y.); (Z.X.); (Y.P.)
| | - Zixuan Xu
- School of Basic Medical Science, Central South University, Changsha 410013, China; (H.Y.); (Z.X.); (Y.P.)
| | - Yuqian Peng
- School of Basic Medical Science, Central South University, Changsha 410013, China; (H.Y.); (Z.X.); (Y.P.)
| | - Jiali Wang
- Xiang Ya School of Medicine, Central South University, Changsha 410013, China;
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- Correspondence: ; Tel.:+86-139-7312-8943
| |
Collapse
|
9
|
Xu Y, Tian H, Luan CG, Sun K, Bao PJ, Zhang HY, Zhang N. Telocytes promote hepatocellular carcinoma by activating the ERK signaling pathway and miR-942-3p/MMP9 axis. Cell Death Discov 2021; 7:209. [PMID: 34376644 PMCID: PMC8355302 DOI: 10.1038/s41420-021-00592-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
In China, hepatocellular carcinoma (HCC) is considered a malignant tumor with poor prognosis, frequent metastasis, and a high relapse rate. Telocytes (TCs) participate in tumorigenic, invasive, and migratory processes by secreting functional proteins and transmitting cell-to-cell information, but their functions in HCC are still unknown. TC counts and MMP9 expression in liver cancer tissues were measured using immunohistochemistry, western blotting, and RT-PCR. Primary TCs from liver para-cancer tissues were cultured in vitro. To verify the role of TCs in HCC, a metastatic cancer animal model was established using three types of liver cancer cell lines in vivo. TCs promoted HCC cell metastasis by MMP9 expression in vitro and in vivo. Platelet-derived growth factor-alpha (PDGF-α), secreted by HCC cells, activated the Ras/ERK signaling pathway in TCs, thereby increasing MMP9 expression; Moreover, miR-942-3p suppressed MMP9 expression in TCs. Our results reveal the role of TCs in HCC and the mechanisms by which they elicit their effects, and they may serve as novel prognostic markers for HCC.
Collapse
Affiliation(s)
- Ying Xu
- Shandong First Medical University and Shandong Academy of Medical Science, Shandong Cancer Hospital and Institute, Ji'nan, Shandong, China
| | - Hu Tian
- The First Affiliated Hospital of Shandong First Medical University, General Surgery, Ji'nan, Shandong, China.
| | - Chao Guang Luan
- Ji 'nan Municipal Three Hospitals, General Surgery, Ji'nan, Shandong, China
| | - Kai Sun
- The First Affiliated Hospital of Shandong First Medical University, General Surgery, Ji'nan, Shandong, China
| | - Peng Jin Bao
- Shandong First Medical University and Shandong Academy of Medical Science, Shandong Cancer Hospital and Institute, Ji'nan, Shandong, China
| | - Hua Yu Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, China
| | - Nan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, China
| |
Collapse
|