1
|
Argyris DG, Markaki MP, Afaloniati H, Karagiannis GS, Poutahidis T, Angelopoulou K. Suppression of chemically induced mammary cancer by early-life oral administration of cholera toxin in mice is associated with aberrant regulation of Bmp and Notch signaling pathways. Mol Biol Rep 2025; 52:150. [PMID: 39841292 DOI: 10.1007/s11033-025-10271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules. In the present work we investigated the protumorigenic mammary microenvironment for possible associations between early life CT administration and the expression of key components of the Bmp and Notch signaling pathways. METHODS AND RESULTS Total RNA from mammary tissue samples were retrieved from a recent experiment where FVB/N female mice were preconditioned with CT and later treated with the carcinogen 7,12-dimethylbenzanthracene (DMBA). Real-time PCR was used for relative quantification of gene expression. Our results revealed that CT anti-tumor effects significantly correlated with deregulation of crucial BMP pathway elements, with downregulation of Bmp7 ligand and upregulation of inhibitory Smad6 being the most prominent alterations observed. Concerning Notch signaling pathway, significantly elevated gene expression levels in the CT-treated DMBA mice, as compared to their non-treated counterparts, were also identified at the ligand-receptor level. CONCLUSIONS These findings suggest that CT tumor protective effects in the mammary gland are associated with discerning deregulation of components of both Bmp and Notch signaling pathways and provide insights into the mechanisms underlying CT's anti-cancer outcome.
Collapse
MESH Headings
- Animals
- Female
- Signal Transduction/drug effects
- Mice
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Cholera Toxin/administration & dosage
- Cholera Toxin/pharmacology
- Administration, Oral
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/genetics
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/genetics
- 9,10-Dimethyl-1,2-benzanthracene
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Dimitrios G Argyris
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment of Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
| | - Maria P Markaki
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hara Afaloniati
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment of Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
2
|
Leow CJ, Piller KR. Life in the fastlane? A comparative analysis of gene expression profiles across annual, semi-annual, and non-annual killifishes (Cyprinodontiformes: Nothobranchiidae). PLoS One 2024; 19:e0308855. [PMID: 39255288 PMCID: PMC11386455 DOI: 10.1371/journal.pone.0308855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
The Turquoise Killifish is an important vertebrate for the study of aging and age-related diseases due to its short lifespan. Within Nothobranchiidae, species possess annual, semi-annual, or non-annual life-histories. We took a comparative approach and examined gene expression profiles (QuantSeq) from 62 individuals from eleven nothobranchid species that span three life-histories. Our results show significant differences in differentially expressed genes (DEGs) across life-histories with non-annuals and semi-annuals being most similar, and annuals being the most distinct. At finer scales, we recovered significant differences in DEGs for DNA repair genes and show that non-annual and semi-annuals share similar gene expression profiles, while annuals are distinct. Most of the GO terms enriched in annuals are related to metabolic processes. However, GO terms, including translation, protein transport, and DNA replication initiation also are enriched in annuals. Non-annuals are enriched in Notch signaling pathway genes and downregulated in the canonical Wnt signaling pathway compared to annual species, which suggests that non-annuals have stronger regulation in cellular processes. This study provides support for congruency in DEGs involved in these life-histories and provides strong evidence that a particular set of candidate genes may be worthy of study to investigate their role in the aging process.
Collapse
Affiliation(s)
- Chi Jing Leow
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Kyle R Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| |
Collapse
|
3
|
Schedel M, Leach SM, Strand MJ, Danhorn T, MacBeth M, Faino AV, Lynch AM, Winn VD, Munoz LL, Forsberg SM, Schwartz DA, Gelfand EW, Hauk PJ. Molecular networks in atopic mothers impact the risk of infant atopy. Allergy 2023; 78:244-257. [PMID: 35993851 DOI: 10.1111/all.15490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The prevalence of atopic diseases has increased with atopic dermatitis (AD) as the earliest manifestation. We assessed if molecular risk factors in atopic mothers influence their infants' susceptibility to an atopic disease. METHODS Pregnant women and their infants with (n = 174, high-risk) or without (n = 126, low-risk) parental atopy were enrolled in a prospective birth cohort. Global differentially methylated regions (DMRs) were determined in atopic (n = 92) and non-atopic (n = 82) mothers. Principal component analysis was used to predict atopy risk in children dependent on maternal atopy. Genome-wide transcriptomic analyses were performed in paired atopic (n = 20) and non-atopic (n = 15) mothers and cord blood. Integrative genomic analyses were conducted to define methylation-gene expression relationships. RESULTS Atopic dermatitis was more prevalent in high-risk compared to low-risk children by age 2. Differential methylation analyses identified 165 DMRs distinguishing atopic from non-atopic mothers. Inclusion of DMRs in addition to maternal atopy significantly increased the odds ratio to develop AD in children from 2.56 to 4.26. In atopic compared to non-atopic mothers, 139 differentially expressed genes (DEGs) were identified significantly enriched of genes within the interferon signaling pathway. Expression quantitative trait methylation analyses dependent on maternal atopy identified 29 DEGs controlled by 136 trans-acting methylation marks, some located near transcription factors. Differential expression for the same nine genes, including MX1 and IFI6 within the interferon pathway, was identified in atopic and non-atopic mothers and high-risk and low-risk children. CONCLUSION These data suggest that in utero epigenetic and transcriptomic mechanisms predominantly involving the interferon pathway may impact and predict the development of infant atopy.
Collapse
Affiliation(s)
- Michaela Schedel
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pulmonary Medicine, University Medicine Essen-Ruhrlandklinik, Essen, Germany.,Department of Pulmonary Medicine, University Medicine Essen, University Hospital, Essen, Germany
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Matthew J Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Department of Pharmacology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Morgan MacBeth
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anna V Faino
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Biostatistics, Epidemiology and Research Core, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Anne M Lynch
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Lindsay L Munoz
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Shannon M Forsberg
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Thoracic Oncology, University of Colorado Cancer Center, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Erwin W Gelfand
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Pia J Hauk
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Section Allergy/Immunology, Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
4
|
Liu T, Li Y, Chen S, Wang L, Liu X, Yang Q, Wang Y, Qiao X, Tong J, Deng X, Shao S, Wang H, Shen H. CircDDX17 enhances coxsackievirus B3 replication through regulating miR-1248/NOTCH receptor 2 axis. Front Microbiol 2022; 13:1012124. [PMID: 36338034 PMCID: PMC9627658 DOI: 10.3389/fmicb.2022.1012124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Coxsackievirus B3 (CVB3) was one of the most common pathogens to cause viral myocarditis. Circular RNAs as novel non-coding RNAs with a closed loop molecular structure have been confirmed to be involved in virus infectious diseases, but the function in CVB3 infection was not systematically studied. In this study, we identified that hsa_circ_0063331 (circDDX17) was drastically decreased after CVB3 infection by circRNA microarray. In vivo and in vitro, when cells or mice were infected with CVB3, the expression of circDDX17 was significantly reduced, as demonstrated by quantitative real-time PCR assays. Additionally, circDDX17 enhanced CVB3 replication by downregulating the expression of miR-1248 in HeLa and HL-1 cells, and miR-1248 regulated CVB3 replication through interacting with the gene coding for NOTCH Receptor 2 (NOTCH2), and NOTCH2 could upregulate methyltransferase-like protein 3 (METTL3). Taken together, this study suggested that circDDX17 promoted CVB3 replication and regulated NOTCH2 by targeting miR-1248 as a miRNAs sponge.
Collapse
Affiliation(s)
- Tingjun Liu
- Cardiothoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuhan Li
- Cardiothoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjie Chen
- Cardiothoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lulu Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaolan Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qingru Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yan Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaorong Qiao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Tong
- Xuzhou Center for Disease Control and Prevention, Xuzhou, China
| | - Xintao Deng
- People’s Hospital of Xinghua, Jiangsu University Teaching Hospital, Xinghua, China
| | - Shihe Shao
- Cardiothoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hua Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Hua Wang,
| | - Hongxing Shen
- Cardiothoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Hongxing Shen,
| |
Collapse
|
5
|
H3K27 demethylase KDM6B aggravates ischemic brain injury through demethylation of IRF4 and Notch2-dependent SOX9 activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:622-633. [PMID: 33981480 PMCID: PMC8076647 DOI: 10.1016/j.omtn.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/17/2021] [Indexed: 01/03/2023]
Abstract
Lysine demethylase 6B (KDM6B) is a histone H3 lysine 27 (H3K27) demethylase that serves as a key mediator of gene transcription. Although KDM6B has been reported to modulate neuroinflammation after ischemic stroke, its role in ischemic brain injury is yet to be well elucidated. Therefore, this study aimed to thoroughly demonstrate the molecular mechanism underlying the effect of KDM6B on neurological function and astrocyte response in post-ischemic brain injury. Middle cerebral artery occlusion/reperfusion (MCAO) mouse models were constructed, while the oxygen-glucose deprivation/reperfusion (OGD/R) model was developed in astrocytes to mimic injury conditions. KDM6B was upregulated post-MCAO in mice and in astrocytes following the induction of OGD/R. Silencing of KDM6B resulted in suppressed neurological deficit, reduced cerebral infarction volume, attenuated neuronal cell apoptosis, and disrupted inflammation. Dual-luciferase reporter gene and chromatin immunoprecipitation-quantitative polymerase chain reaction assays revealed that KDM6B inhibited H3K27 trimethylation in the interferon regulatory factor 4 (IRF4) promoter region, resulting in the upregulation of IRF4 expression, which in turn bound to the Notch2 promoter region to induce its downstream factor SRY-related high-mobility group box 9 (SOX9). SOX9 knockdown reversed the effects of KDM6B overexpression on ischemia-triggered brain damage. Based on these findings, we concluded that KDM6B-mediated demethylation of IRF4 contributes to aggravation of ischemic brain injury through SOX9 activation.
Collapse
|