1
|
Gong Z, Ge L, Ye S, Xu Y. Hsa_circ_0000069 Accelerates Cervical Cancer Progression by Sponging miR-1270 to Facilitate CPEB4 Expression. Biochem Genet 2024; 62:1638-1656. [PMID: 37667097 DOI: 10.1007/s10528-023-10494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
The critical importance of circular RNAs (circRNAs) in human cancers, including cervical cancer (CC), has been discovered in recent years. However, the function and mechanism of hsa_circ_0000069 (circ_0000069) in CC have been fully understood. The expression levels of circ_0000069, microRNAs (miR-1270, miR-1276 and miR-620) and cytoplasmic polyadenylation element binding protein 4 (CPEB4) mRNA were detected by quantitative real time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, transwell and tube formation assays were used to clarify the effects of circ_0000069 on the functional behaviors of CC cells. The binding relationships among miR-1270, circ_0000069 and CPEB4 were detected by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. A xenograft tumor model was established to explore the effect of circ_0000069 on tumor growth in vivo. Circ_0000069 was upregulated in CC clinical samples and cell lines, and its expression was associated with the clinical stage of CC patients. Circ_0000069 knockdown significantly decreased cell proliferation, invasion, migration, and tube formation and increased cell apoptosis in vitro. Moreover, miR-1270 was a direct target of circ_0000069, and CPEB4 was the downstream target of miR-1270. Knockdown of miR-1270 reversed the inhibitory effect of circ_0000069 knockdown on CC progression, and CPEB4 overexpression overturned the effect of miR-1270 on CC progression. In xenograft experiments, the oncogenic effect of circ_0000069 on tumor growth was verified. Altogether, circ_0000069 adsorbed miR-1270 to upregulate CPEB4 expression, thereby promoting the malignant phenotypes of CC cells. Circ_0000069 might be a potential target for treatment of CC.
Collapse
Affiliation(s)
- Zhiyong Gong
- Obstetrics and Gynecology Department, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lingyan Ge
- Obstetrics and Gynecology Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Tiyuchang Road, Hangzhou, 310007, China
| | - Saiya Ye
- Obstetrics and Gynecology Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Tiyuchang Road, Hangzhou, 310007, China
| | - Yinyu Xu
- Obstetrics and Gynecology Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Tiyuchang Road, Hangzhou, 310007, China.
| |
Collapse
|
2
|
Uttam V, Rana MK, Sharma U, Singh K, Jain A. Circulating long non-coding RNA EWSAT1 acts as a liquid biopsy marker for esophageal squamous cell carcinoma: A pilot study. Noncoding RNA Res 2024; 9:1-11. [PMID: 38028735 PMCID: PMC10679462 DOI: 10.1016/j.ncrna.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The widespread public health problem of esophageal squamous cell carcinoma (ESCC) is the cause of an increasing number of deaths each year due to delayed diagnosis. Therefore, we require specific and sensitive new biomarkers to manage ESCC better. The detection of diseases, such as cancer, can now be achieved through non-invasive circulating blood-based methods. Blood-based circulating non-coding RNAs, such as miRNA and lncRNA, have been extensively used as valuable markers for lung, esophageal, and breast cancer diagnostic purposes, as quoted in our previous research. Herein, we investigated the role of novel long non-coding RNA EWSAT1 as a blood-based liquid biopsy biomarker for the ESCC. Our findings indicate that EWSAT1 lncRNA has an increased tumor suppressive activity in ESCC, as it reduces by ∼2.59-fold relative to healthy controls. Moreover, we established that EWSAT1 expression can significantly distinguish between clinicopathological characteristics, including age, gender, and lifestyle choices such as smoking, alcohol consumption, and drinking hot beverages among patients with ESCC and healthy individuals. In addition, the expression levels of lncRNA EWSAT1 could distinguish between individuals with more advanced ESCC cancer and those without it, as illustrated by the ROC curve (AUC = 0.7174, 95 % confidence intervals = 0.5901 to 0.8448, p-value = 0.001). Our in-silico prediction methods demonstrated that miR-873-5p is the direct target of EWSAT1, which competes with the tumor suppressor candidate 3 (TUSC3) and EGL-9 family hypoxia-inducible factor 3 (EGLN3) mRNAs through a sponging mechanism, creating the EWSAT1/miR-873-5p/mRNA axis. We have analyzed the role of EWSAT1 in various cellular processes and signaling pathways, including mTOR, Wnt, and MAPK signaling pathways. Circulating EWSAT1 can be used as a liquid biopsy marker for diagnosis of ESCC and has the potential to serve as an effective therapeutic biomarker, according to this pilot study.
Collapse
Affiliation(s)
- Vivek Uttam
- Department of Zoology, Central University of Punjab, Ghudda, 151401, Bathinda, Punjab, India
| | - Manjit Kaur Rana
- Department of Pathology/Laboratory Medicine, All India Institute of Medical Sciences, 151001, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151401, Bathinda, Punjab, India
| | - Karuna Singh
- Department of Radiotherapy, Advanced Cancer Institute, 151001, Bathinda, Affiliated with Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
3
|
Xia F, Xie M, He J, Cheng D. Circ_0004140 promotes lung adenocarcinoma progression by upregulating NOVA2 via sponging miR-330-5p. Thorac Cancer 2023; 14:3483-3494. [PMID: 37920146 PMCID: PMC10719663 DOI: 10.1111/1759-7714.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a significant role in the tumorigenesis and progression of diverse human cancers, including lung adenocarcinoma. A previous study suggested that circ_0004140 expression was increased in lung adenocarcinoma cells. However, the molecular mechanism of circRNA circ_0004140 involved in lung adenocarcinoma is poorly defined. METHODS Circ_0004140, microRNA-330-5p (miR-330-5p), and NOVA alternative splicing regulator 2 (NOVA2) expression were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, migration, invasion, and angiogenesis ability were assessed using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, transwell, and capillary-like network formation assays. Proliferating cell nuclear antigen (PCNA), cyclin D1, and NOVA2 protein levels were detected using Western blot assay. The interaction between miR-330-5p and circ_0004140 or NOVA2 was verified by dual-luciferase reporter assay. Xenograft tumor model was utilized to assess the role of circ_0004140 in tumor growth in vivo. RESULTS Circ_0004140 was upregulated in lung adenocarcinoma tissues and cell lines. Circ_0004140 silencing suppressed cell proliferation, migration, invasion and tube formation ability, and triggered the apoptosis of lung adenocarcinoma cells. Circ_0004140 acted as a molecular sponge for miR-330-5p, and miR-330-5p silencing largely reversed circ_0004140 knockdown-induced effects in lung adenocarcinoma cells. NOVA2 was a target of miR-330-5p, and NOVA2 overexpression might largely overturn miR-330-5p overexpression-induced influences in lung adenocarcinoma cells. Circ_0004140 upregulated NOVA2 expression via sponging miR-330-5p in lung adenocarcinoma cells. Circ_0004140 silencing restrained xenograft tumor growth in vivo. CONCLUSION Circ_0004140 knockdown might suppress the malignant biological behaviors of lung adenocarcinoma cells via miR-330-5p-dependent regulation of NOVA2.
Collapse
Affiliation(s)
- Fan Xia
- Department of Respiratory and Critical Care MedicineWest China Hospital, Sichuan UniversityChengduChina
| | - Mei Xie
- Department of Respiratory and Critical Care MedicineThe Chengdu Second People's HospitalChengduChina
| | - Jinqi He
- Department of Hematology Oncologythe central Hospital of ShaoyangShaoyangChina
| | - Deyun Cheng
- Department of Respiratory and Critical Care MedicineWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Chuang YT, Shiau JP, Tang JY, Farooqi AA, Chang FR, Tsai YH, Yen CY, Chang HW. Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products. Cancers (Basel) 2023; 15:cancers15082215. [PMID: 37190145 DOI: 10.3390/cancers15082215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
5
|
Wang J, Zhang B, Gong S, Liu Y, Yi L, Long Y. Cancer susceptibility 18 positively regulates NUAK Family Kinase 1 expression to promote migration and invasion via sponging of miR-5586-5p in cervical cancer cells. Int J Immunopathol Pharmacol 2023; 37:3946320231223310. [PMID: 38131232 DOI: 10.1177/03946320231223310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Cervical squamous cell carcinoma (CESC) is the most common gynecological malignancy worldwide. Although the cancer susceptibility 18 (CASC18) gene was involved in the regulation of cancer biology, its specific role in CESC is not well characterized. METHODS CASC18-related axis was predicted by bioinformatic analyses, and the competing endogenous RNA (ceRNA) interaction was further validated using quantitative real-time PCR, western blotting, RNA pulldown, and luciferase reporter assays. Transwell and wound healing assays were performed to verify the effect of CASC18 on SiHa and HeLa cell motility. RESULTS We found that CASC18 was upregulated in CESC tissues. Moreover, interference with CASC18 attenuated NUAK1-mediated epithelial-mesenchymal transition (EMT) and thus suppressed cancer cell motility. Furthermore, the effects of CASC18 knockdown on CESC cells were partly rescued by transfection with the miR-5586-5p inhibitor. Additionally, our findings indicated that CASC18 acts as a ceRNA to enhance NUAK1 expression by sponging miR-5586-5p. CONCLUSION Our study showed a novel CASC18/miR-5586-5p/NUAK1 ceRNA axis that could regulate cell invasion and migration by modulating EMT in CESC. These findings suggest that CASC18 may potentially serve as a novel therapeutic target in CESC treatment.
Collapse
Affiliation(s)
- Jingrong Wang
- Translational Medicine Centre, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bocheng Zhang
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sha Gong
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Liu
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Liang Yi
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Long
- Translational Medicine Centre, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
6
|
He X, Chen J, Zhou J, Mao A, Xu W, Zhu H, Pan Q, Zhao Y, Zhang N, Wang L, Wang M, Liu Z, Zhu W, Wang L. LncRNA-EWSAT1 promotes hepatocellular carcinoma metastasis via activation of the Src-YAP signaling axis. FASEB J 2022; 36:e22663. [PMID: 36421017 DOI: 10.1096/fj.202200825r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Regardless of the improvements in diagnostic and therapeutic methods, the clinical outcomes of hepatocellular carcinoma (HCC) patients remain poor. Although accumulating evidence indicates that lncRNAs (long noncoding RNAs) are essential within the control of tumorigenesis and the metastasis of cancer, the underlying mechanisms remain largely unknown. This work explored the pattern of expression and functional significance of a newly found lncRNA, Ewing sarcoma-associated transcript 1 (EWSAT1), in HCC metastasis. The results indicated that EWSAT1 was upregulated significantly in HCC relative to that in normal tissues and was correlated with an aggressive phenotype and low patient survival. Functional experiments demonstrated that EWSAT1 could promote proliferation and HCC cell metastasis both in vitro and in vivo. Mechanistically, EWSAT1 binds directly to Yes-associated protein (YAP), promotes Sarcoma gene (Src)-induced phosphorylation of YAP, facilitates nuclear translocation of YAP, and consequently, activates the transcription of Hippo-YAP signaling target genes involved in cancer evolution. This study found that EWSAT1 plays a crucial role in HCC metastasis and that it has the potential to be a prognosis biomarker and a target for therapeutics.
Collapse
Affiliation(s)
- Xigan He
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinggui Chen
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiamin Zhou
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Xu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongxu Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Pan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiming Zhao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longrong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miao Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zeyang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, Shojaie L, Mirzaei H. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target. Biomed Pharmacother 2021; 146:112600. [PMID: 34968919 DOI: 10.1016/j.biopha.2021.112600] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
As small non-coding RNAs, MicroRNAs (miRNAs) bind to the 3' untranslated region (3'-UTR) of mRNA targets to control gene transcription and translation. The gene of miR-330 has two miRNA products, including miR-330-3p and miR-330-5p, which exhibit anti-tumorigenesis and/or pro-tumorigenesis effects in many kinds of malignancies. In cancers, miR-330-3p and miR-330-5p aberrant expression can influence many malignancy-related processes such as cell proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition, as well as angiogenesis and responsiveness to treatment. In many cancer types (such as lung, prostate, gastric, breast, bladder, ovarian, colorectal, and pancreatic cancer, and osteosarcoma), miR-330-5p acts as an anti-tumor agent. These cancers have low levels of miR-330-5p that leads to the upregulation of the tumor promotor target genes leading to tumor progression. Here, overexpression of miR-330-5p using miRNA inducers can prevent tumor development. Dual roles of miR-330-5p have been also indicated in the thyroid, liver and cervical cancers. Moreover, miR-330-3p exhibits pro-tumorigenesis effects in lung cancer, pancreatic cancer, osteosarcoma, bladder cancer, and cervical cancer. Here, downregulation of miR-330-3p using miRNA inhibitors can prevent tumor development. Demonstrated in breast and liver cancers, miR-330-3p also has dual roles. Importantly, the activities of miR-330-3p and/or miR-330-5p are regulated by upstream regulators long non-coding RNAs (lncRNAs), including circular and linear lncRNAs. This review comprehensively explained miR-330-3p and miR-330-5p role in development of cancers, while highlighting their downstream target genes and upstream regulators as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Paknahad
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research center for Liver diseases, Keck school of medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Lamsisi M, Wakrim L, Bouziyane A, Benhessou M, Oudghiri M, Laraqui A, Elkarroumi M, Ennachit M, El Mzibri M, Ennaji MM. The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:75-101. [PMID: 34703793 PMCID: PMC8496250 DOI: 10.22088/ijmcm.bums.10.2.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
Despite the remarkable decrease in cervical cancer incidence due to the availability of the HPV vaccine and implementation of screening programs for early detection in developed countries, this cancer remains a major health problem globally, especially in developing countries where most of the cases and mortality occur. Therefore, more understanding of molecular mechanisms of cervical cancer development might lead to the discovery of more effective diagnosis and treatment options. Research on long noncoding RNAs (lncRNAs) demonstrates the important roles of these molecules in many physiological processes and diseases, especially cancer. In the present review, we discussed the significance of lncRNAs altered expression in cervical cancer, highlighting their roles in regulating highly conserved signaling pathways, such as mitogen-activated protein kinase (MAPK), Wnt/β-catenin, Notch, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways and their association with the progression of cervical cancer in order to bring more insight and understanding of this disease and their potential implications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Maryame Lamsisi
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
| | - Lahcen Wakrim
- Laboratory of Virology, Pasteur Institute of Morocco. Casablanca, Morocco.
| | - Amal Bouziyane
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- University Mohammed VI of Health Science, Casablanca, Morocco.
| | - Mustapha Benhessou
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mounia Oudghiri
- Immunology and Biodiversity laboratory, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Morocco.
| | - Abdelilah Laraqui
- Research and Biosafety Laboratory, Mohammed V Military Hospital, University Mohammed V of Rabat, Morocco.
| | - Mohamed Elkarroumi
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mohammed Ennachit
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | | | - Moulay Mustapha Ennaji
- Corresponding author: Faculty of Science and Techniques Mohammedia, University Hassan II of Casablanca, Morocco. E-mail:
| |
Collapse
|
9
|
Fu J, Zhang Y, Wang M, Hu J, Fang Y. Inhibition of the long non-coding RNA UNC5B-AS1/miR-4455/RSPO4 axis reduces cervical cancer growth in vitro and in vivo. J Gene Med 2021; 23:e3382. [PMID: 34350661 DOI: 10.1002/jgm.3382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are significant regulatory factors for the initiation and development of numerous malignant tumors, including cervical cancer (CC). The expression of lncRNA unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1, also known as UASR1) is up-regulated in tissues of cervical squamous cell carcinoma and endocervical adenocarcinoma compared to in normal tissues based on the GEPIA database. In the present study, we explored the functions of UNC5B-AS1 and its underlying mechanism with respect to CC development. METHODS A real-time quantitative polymerase chain reaction was applied for the detection of UNC5B-AS1 expression in CC cells. Cell counting kit-8, colony formation and transwell assays, as well as western blot and flow cytometry analyses, were employed to detect the biological effects of UNC5B-AS1 knockdown on malignant phenotypes of CC cells in vitro. In addition, the combination between microRNA-4455 (miR-4455) and UNC5B-AS1 or R-spondin 4 (RSPO4) was explored by RNA immunoprecipitation, luciferase reporter and RNA pulldown assays. A tumor xenograft nude mice model was established to explore the effect of UNC5B-AS1 depletion or miR-4455 overexpression on tumor growth. RESULTS UNC5B-AS1 is up-regulated in CC tissues and cells. The knockdown of UNC5B-AS1 inhibits CC cell proliferation, migration and invasion and promotes CC cell apoptosis. Mechanistically, UNC5B-AS1 binds with miR-4455 to up-regulate RSPO4 expression. RSPO4 is targeted by miR-4455 and its expression is negatively regulated by miR-4455 expression. In vivo assays revealed that UNC5B-AS1 depletion or miR-4455 overexpression inhibits tumor growth by regulating RSPO4 expression. CONCLUSIONS Inhibition of UNC5B-AS1/miR-4455/RSPO4 reduces CC growth both in vitro and in vivo, furnishing new insights into molecular studies on UNC5B-AS1 with respect to CC development.
Collapse
Affiliation(s)
- Jian Fu
- Department of Gynecology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Yuanyuan Zhang
- Department of Emergency, Huaian Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Min Wang
- Department of Gynecology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Junwu Hu
- Department of Gynecology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Yuelan Fang
- Department of Gynecology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| |
Collapse
|
10
|
Xie H, Wang J, Wang B. Circular RNA Circ_0003221 Promotes Cervical Cancer Progression by Regulating miR-758-3p/CPEB4 Axis. Cancer Manag Res 2021; 13:5337-5350. [PMID: 34262342 PMCID: PMC8275042 DOI: 10.2147/cmar.s311242] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play crucial roles in the development and progression of various cancers, including cervical cancer. However, the role and regulatory mechanism of circ_0003221 in cervical cancer are still unclear. METHODS The expression of circ_0003221, microRNA-758-3p (miR-758-3p), cytoplasmic polyadenylation element-binding protein 4 (CPEB4) was detected by quantitative real-time PCR (qRT-PCR). Cell Counting Kit-8 (CCK-8), colony formation, and 5-Ethynyl-2'-deoxyuridine (Edu) assays were utilized to determine cell proliferation. Cell cycle distribution was analyzed by flow cytometry. Cell migration and invasion were detected by transwell assay. All protein levels were detected by Western blot assay. The interaction between miR-758-3p and circ_0003221 or CPEB4 was confirmed by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays. Mice xenograft model of cervical cancer was established to verify the function of circ_0003221 in vivo. RESULTS Circ_0003221 was upregulated in cervical cancer tissues and cells. Knockdown of circ_0003221 suppressed cell proliferation, migration, invasion, and EMT and induced cell cycle arrest in cervical cancer cells. MiR-758-3p was a direct target of circ_0003221, and miR-758-3p inhibition reversed the effects of circ_0003221 knockdown in cervical cancer cells. Moreover, CPEB4 was identified as a direct target of miR-758-3p, and miR-758-3p exerted its anti-cancer role by targeting CPEB4. Furthermore, circ_0003221 acted as a sponge of miR-758-3p to upregulate CPEB4 expression. In addition, circ_0003221 silence also suppressed tumor growth and EMT in vivo. CONCLUSION Circ_0003221 knockdown inhibited cervical cancer progression via modulating miR-758-3p/CPEB4 axis, which might suggest a new insight into the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Haihui Xie
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan, People’s Republic of China
- Clinical Research Center, Prevention and Treatment of Breast & Thyroid Disease in Hunan Province, Hengyang, Hunan, People’s Republic of China
| | - Jian Wang
- Department of Emergency, The First Affiliated Hospital of South China University, Hengyang, Hunan, People’s Republic of China
| | - Baiqi Wang
- Department of Oncology Hematology, The Second Affiliated Hospital of South China University, Hengyang, Hunan, People’s Republic of China
| |
Collapse
|
11
|
Mathias C, Muzzi JCD, Antunes BB, Gradia DF, Castro MAA, Carvalho de Oliveira J. Unraveling Immune-Related lncRNAs in Breast Cancer Molecular Subtypes. Front Oncol 2021; 11:692170. [PMID: 34136413 PMCID: PMC8202402 DOI: 10.3389/fonc.2021.692170] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BRCA) is the most leading cause of cancer worldwide. It is a heterogeneous disease with at least five molecular subtypes including luminal A, luminal B, basal-like, HER2-enriched, and normal-like. These five molecular subtypes are usually stratified according to their mRNA profile patterns; however, ncRNAs are increasingly being used for this purpose. Among the ncRNAs class, the long non-coding RNAs (lncRNAs) are molecules with more than 200 nucleotides with versatile regulatory roles; and high tissue-specific expression profiles. The heterogeneity of BRCA can also be reflected regarding tumor microenvironment immune cells composition, which can directly impact a patient's prognosis and therapy response. Using BRCA immunogenomics data from a previous study, we propose here a bioinformatics approach to include lncRNAs complexity in BRCA molecular and immune subtype. RNA-seq data from The Cancer Genome Atlas (TCGA) BRCA cohort was analyzed, and signal-to-noise ratio metrics were applied to create these subtype-specific signatures. Five immune-related signatures were generated with approximately ten specific lncRNAs, which were then functionally analyzed using GSEA enrichment and survival analysis. We highlighted here some lncRNAs in each subtype. LINC01871 is related to immune response activation and favorable overall survival in basal-like samples; EBLN3P is related to immune response suppression and progression in luminal B, MEG3, XXYLT1-AS2, and LINC02613 were related with immune response activation in luminal A, HER2-enriched and normal-like subtypes, respectively. In this way, we emphasize the need to know better the role of lncRNAs as regulators of immune response to provide new perspectives regarding diagnosis, prognosis and therapeutical targets in BRCA molecular subtypes.
Collapse
Affiliation(s)
- Carolina Mathias
- Department of Genetics, Federal University of Parana, Post-graduation Program in Genetics, Curitiba, Brazil
| | - João Carlos Degraf Muzzi
- Bioinformatics and Systems Biology Lab, Federal University of Parana (UFPR), Polytechnic Center, Curitiba, Brazil.,Immunochemistry Laboratory (LIMQ), Federal University of Parana, Post-graduation Program in Microbiology, Parasitology and Pathology, Curitiba, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Oncology Division, Curitiba, Brazil
| | - Bruna Borba Antunes
- Department of Genetics, Federal University of Parana, Post-graduation Program in Genetics, Curitiba, Brazil.,Bioinformatics and Systems Biology Lab, Federal University of Parana (UFPR), Polytechnic Center, Curitiba, Brazil
| | - Daniela F Gradia
- Department of Genetics, Federal University of Parana, Post-graduation Program in Genetics, Curitiba, Brazil
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Lab, Federal University of Parana (UFPR), Polytechnic Center, Curitiba, Brazil
| | | |
Collapse
|
12
|
Liu J, Huang S, Liao X, Chen Z, Li L, Yu L, Zhan W, Li R. LncRNA EWSAT1 Promotes Colorectal Cancer Progression Through Sponging miR-326 to Modulate FBXL20 Expression. Onco Targets Ther 2021; 14:367-378. [PMID: 33469313 PMCID: PMC7812937 DOI: 10.2147/ott.s272895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ewing sarcoma-associated transcript 1 (EWSAT1) has been reported to be a pivotal modulator in a series of cancers. However, the function of EWSAT1 in colorectal cancer (CRC) has not been elaborated. This study aimed to explore the role of EWSAT1 in CRC progression and the underlying mechanisms. METHODS The expression patterns of EWSAT1, miR-326 and FBXL20 were examined by qCRCR. Si-EWSAT1 was transfected to study the effects of EWSAT1 on cell proliferation and metastasis. Rescue experiments were performed to investigate the underlying mechanisms in vitro. Xenograft models were used to evaluate the role of EWSAT1 in vivo. RESULTS We found that EWSAT1 was highly expressed in CRC tissues and cell lines and associated with poor overall survival. In vitro, knockdown of EWSAT1 suppressed the cell proliferation, migration and invasion. Moreover, miR-326 was found to be a target of EWSAT1, and miR-326 inhibitor could partially reverse the effects on CRC cell progression induced by si-EWSAT1. Subsequently, we validated FBXL20 as a vital downstream target for miR-326, and EWSAT1 positively regulated FBXL20 via miR-326 in vitro. In addition, these findings were confirmed by in vivo experiments. CONCLUSION Taken together, the data showed that EWSAT1 promoted CRC progression via targeting miR-326/FBXL20 pathway, which might provide a novel therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Jing Liu
- Imaging Department, Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Shimei Huang
- Forensic Clinical Teaching and Research Office, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Xin Liao
- Imaging Department, Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Zhongsheng Chen
- Surgery, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Lianghe Li
- Surgery, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, Guiyang, People’s Republic of China
| | - Wei Zhan
- General Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People’s Hospital, Guiyang, People’s Republic of China
| |
Collapse
|