1
|
Lu R, Jin Y, Zheng M. USP5-dependent HDAC1 promotes cisplatin resistance and the malignant progression of non-small cell lung cancer by regulating RILP acetylation levels. Thorac Cancer 2025; 16:e15478. [PMID: 39582290 PMCID: PMC11729750 DOI: 10.1111/1759-7714.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with cisplatin (DDP) resistance being a significant challenge in its treatment. Histone deacetylase 1 (HDAC1) has been implicated in the regulation of NSCLC progression; however, its role in the resistance of NSCLC to DDP remains unclear. METHODS The mRNA levels of HDAC1, ubiquitin specific peptidase 5 (USP5), and Rab interacting lysosomal protein (RILP) were analyzed by quantitative real-time polymerase chain reaction. The protein expression of HDAC1, multidrug resistance protein 1 (MRP1) and RILP was detected by western blotting assay or immunohistochemistry assay. The IC50 value of DDP was determined using a cell counting kit-8 assay, while cell proliferation, apoptosis, and invasion were assessed using 5-Ethynyl-2'-deoxyuridine assay, flow cytometry, and trans well invasion assay, respectively. Cancer stem-like cell properties were analyzed by a sphere formation assay. The interaction between USP5 andHDAC1 was investigated using MG132 assay and co-immunoprecipitation (Co-IP).RILP acetylation was analyzed by a Co-IP assay. A xenograft mouse model assay was employed to study the in vivo effects of HDAC1 silencing on DDP sensitivity. RESULTS HDAC1 expression was upregulated in DDP-resistant NSCLC tissues and cells. Silencing HDAC1 enhanced the sensitivity of NSCLC cells to DDP, inhibited cell proliferation, invasion, and the formation of microspheres and induced cell apoptosis. USP5 was found to deubiquitinate and stabilize HDAC1 in DDP-resistant NSCLC cells. Moreover, HDAC1 overexpression reversed the effects induced by USP5 silencing. HDAC1 also sensitized Rab-interacting lysosomal protein (RILP) acetylation in DDP-resistant NSCLC cells, and RILP upregulation counteracted the effects of HDAC1 overexpression in DDP-resistant NSCLC cells. HDAC1 silencing also improved the sensitivity of tumors to DDP in vivo. CONCLUSION USP5-dependentstabilization of HDAC1 contributed to cisplatin resistance and the malignancy of NSCLC by diminishing the levels of RILP acetylation, which suggested that targeting the HDAC1-USP5axis might represent a novel therapeutic strategy for overcoming DDP resistance in NSCLC patients.
Collapse
Affiliation(s)
- Rongguo Lu
- Department of Thoracic SurgeryWuxi People's HospitalWuxiChina
| | - Yulin Jin
- Department of Thoracic SurgeryWuxi People's HospitalWuxiChina
| | - Mingfeng Zheng
- Department of Thoracic SurgeryWuxi People's HospitalWuxiChina
| |
Collapse
|
2
|
Wei Z, Xia K, Zheng D, Gong C, Guo W. RILP inhibits tumor progression in osteosarcoma via Grb10-mediated inhibition of the PI3K/AKT/mTOR pathway. Mol Med 2023; 29:133. [PMID: 37789274 PMCID: PMC10548720 DOI: 10.1186/s10020-023-00722-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Rab-interacting lysosomal protein (RILP) contains an alpha-helical coil with an unexplored biological function in osteosarcoma. This study investigated the expression of RILP in osteosarcoma cells and tissues to determine the effect of RILP on the biological behaviors of osteosarcoma cells and the underlying mechanism. METHODS Tumor Immune Estimation Resource (TIMER) database, The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database were used for bioinformatic analysis. Co-immunoprecipitation experiment was used to determine whether the two proteins were interacting. In functional tests, cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay, transwell invasion assay, Immunofluorescence (IF) assay and immunohistochemical (IHC) assay were performed. RESULTS Overexpression of RILP significantly inhibited proliferation and impaired metastasis ability of osteosarcoma cells, while silencing of RILP showed the opposite trend. RNA-seq data analysis was applied in 143B cells and pathway enrichment analysis revealed that differentially expressed genes were mainly enriched in the PI3K/AKT pathway. We further verified that overexpression of RILP restrained the PI3K/AKT/mTOR signaling pathway and induced autophagy in osteosarcoma cells, while the opposite trend was observed when PI3K pathway activator 740Y-P was used. 3-Methyladenine (3-MA), a selective autophagy inhibitor, partially attenuated the inhibitory effect of RILP on the migration and invasion ability of osteosarcoma cells, suggesting the involvement of autophagy in epithelial-mesenchymal transition regulation in osteosarcoma cells. Growth factor receptor binding protein-10 (Grb10), an adaptor protein, was confirmed as a potential target of RILP to restrain the PI3K/AKT signaling pathway. We subcutaneously injected stably overexpressing 143B osteosarcoma cells into nude mice and observed that overexpression of RILP inhibited tumor growth by inhibiting the PI3K/AKT/mTOR pathway. CONCLUSION Our study revealed that the expression of RILP was associated with favorable prognosis of osteosarcoma and RILP inhibits proliferation, migration, and invasion and promotes autophagy in osteosarcoma cells via Grb10-mediated inhibition of the PI3K/AKT/mTOR signaling pathway. In the future, targeting RILP may be a potential strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhun Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Changtian Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Cui G, Jiang Z, Chen Y, Li Y, Ai S, Sun R, Yi X, Zhong G. Evolutional insights into the interaction between Rab7 and RILP in lysosome motility. iScience 2023; 26:107040. [PMID: 37534141 PMCID: PMC10391735 DOI: 10.1016/j.isci.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 12/12/2022] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Lysosome motility is critical for the cellular function. However, Rab7-related transport elements showed genetic differences between vertebrates and invertebrates, making the mechanism of lysosomal motility mysterious. We suggested that Rab7 interacted with RILP as a feature of highly evolved organisms since they could interact with each other in Spodoptera frugiperda but not in Drosophila melanogaster. The N-terminus of Sf-RILP was identified to be necessary for their interaction, and Glu61 was supposed to be the key point for the stability of the interaction. A GC-rich domain on the C-terminal parts of Sf-RILP hampered the expression of Sf-RILP and its interaction with Sf-Rab7. Although the corresponding vital amino acids in the mammalian model at the C-terminus of Sf-RILP turned to be neutral, the C-terminus would also help with the homologous interactions between RILP fragments in insects. The significantly different interactions in invertebrates shed light on the biodiversity and complexity of lysosomal motility.
Collapse
Affiliation(s)
- Gaofeng Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Zhiyan Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yun Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shupei Ai
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ranran Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks. Metabolites 2023; 13:metabo13030339. [PMID: 36984779 PMCID: PMC10052551 DOI: 10.3390/metabo13030339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein–protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases.
Collapse
|
5
|
Wu B, Shang J, Lin S, Jiang N, Xing B, Peng R, Xu X, Lu H. A Novel Role for RILP in Regulating Osteoclastogenesis and Bone Resorption. J Transl Med 2023; 103:100067. [PMID: 36801641 DOI: 10.1016/j.labinv.2023.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Increased bone resorption caused by excessive number or activity of osteoclasts is the main cause of osteoporosis. Osteoclasts are multinucleated cells that are formed by the fusion of precursor cells. Although osteoclasts are primarily characterized by bone resorption, our understanding of the mechanisms that regulate the formation and function of osteoclasts is poor. Here we showed that the expression level of Rab interacting lysosomal protein (RILP) was strongly induced by receptor activator of NF-κB ligand in mouse bone marrow macrophages. Inhibition of RILP expression induced a drastic decrease in the number, size, F-actin ring formation of osteoclasts, and the expression level of osteoclast-related genes. Functionally, inhibition of RILP reduced the migration of preosteoclasts through PI3K-Akt signaling and suppressed bone resorption by inhibiting the secretion of lysosome cathepsin K. Treatments with siRNA-RILP attenuated pathologic bone loss in disease models induced by lipopolysaccharide. Thus, this work indicates that RILP plays an important role in the formation and bone resorption function of osteoclasts and may have a therapeutic potential to treat bone diseases caused by excessive or hyperactive osteoclasts.
Collapse
Affiliation(s)
- Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shiyuan Lin
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Baizhou Xing
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Rong Peng
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xianghe Xu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| | - Huading Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
6
|
Prognostic Significance of ANGPTL4 in Lung Adenocarcinoma: A Meta-Analysis Based on Integrated TCGA and GEO Databases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3444740. [PMID: 36248419 PMCID: PMC9568294 DOI: 10.1155/2022/3444740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Lung adenocarcinoma (LUAD) is a common malignant tumor with a poor prognosis. Recent studies have found that angiopoietin-like 4 (ANGPTL4) is abnormally expressed in many tumors, so it can serve as a potential prognostic marker and therapeutic target. However, its prognostic value in LUAD remains unclear. We downloaded RNA sequence data for LUAD from The Cancer Genome Atlas (TCGA) database, methylation data from the University of California Santa Cruz genome database, and clinical information. R software (version 4.1.1) was applied to analyze the ANGPTL4 expression in LUAD and nontumor samples, and the correlation with clinical characteristics to assess its prognostic and diagnostic value. In addition, we analyzed the relationship between the ANGPTL4 expression and methylation levels. Tumor IMmune Estimation Resource (TIMER) tool was taken for immune infiltration analysis, and two Gene Expression Omnibus (GEO) datasets were combined for meta-analysis. Finally, differentially expressed genes (DEGs) related to ANGPTL4 were analyzed to clarify its function. As shown in our results, ANGPTL4 was upregulated in LUAD and was an independent risk factor for the diagnosis and prognosis of LUAD. The general methylation level and eight ANGPTL4 methylation sites were significantly negatively correlated with the ANGPTL4 expression. Furthermore, we found that B cell infiltration was negatively correlated with ANGPTL4 expression and was an independent risk factor. Meta-analysis showed that the high expression of ANGPTL4 was closely associated with a poor prognosis. 153 DEGs, including the matrix metalloproteinase family, the chemokines subfamily, and the collagen family, were correlated with ANGPTL4. In this study, we found that ANGPTL4 was significantly elevated in LUAD and was closely associated with the development and poor prognosis of LUAD, suggesting that ANGPTL4 may be a prognostic biomarker and a potential therapeutic target for LUAD.
Collapse
|
7
|
Yang SC, Wang WY, Zhou JJ, Wu L, Zhang MJ, Yang QC, Deng WW, Sun ZJ. Inhibition of DNMT1 potentiates antitumor immunity in oral squamous cell carcinoma. Int Immunopharmacol 2022; 111:109113. [PMID: 35944462 DOI: 10.1016/j.intimp.2022.109113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Epigenetic alterations, including DNA methylation, play crucial roles in the tumor. Epigenetic drugs like DNA methyltransferase-1 (DNMT1) inhibitors have been exhibited positive effects in cancer treatment. However, the role of DNMT1 in oral squamous cell carcinoma (OSCC) is less clearly described. What is more, the effects on the immune microenvironment of DNMT1 have not become appreciated. In this research, we determine the expression levels of DNMT1 and the association of prognosis by analyzing human OSCC tissue microarrays. Two different types of immunocompetent mouse OSCC models were established to explore the effects of DNMT1 inhibitor on the tumor microenvironment(TME). We identified DNMT1 was highly expressed both in human and mouse OSCC tissues. The expression levels of DNMT1 was also correlated with the immunosuppressive molecules and tumor-promoter such as VISTA, PD-L1, B7-H4, and PAK2, indicating a worse prognosis. Of particular concern is that DNMT1 inhibition improved TME and delayed tumor growth by decreasing myeloid-derived suppressor cells (MDSCs) and increasing tumor-infiltrating T cells. Our data suggests that DNMT1 play a key role in OSCC and has a possible immunotherapeutic marker treatment.
Collapse
Affiliation(s)
- Shao-Chen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Wu-Yin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Jun-Jie Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China.
| |
Collapse
|
8
|
The Efficacy of 18F-FDG PET/CT and Superparamagnetic Nanoferric Oxide MRI in the Diagnosis of Lung Cancer and the Value of 18F-FDG PET/CT in the Prediction of Lymph Node Metastasis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2448782. [PMID: 34552658 PMCID: PMC8452397 DOI: 10.1155/2021/2448782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023]
Abstract
In China, lung cancer is one of the leading causes of death among residents. Early diagnosis is of great significance for early interventional treatment and prolonging survival. PET/CT uses positron radiopharmaceuticals to observe the physiological and biochemical changes of the drug and its metabolites in the body and finally diagnoses the disease. 18F-FDG is a commonly used imaging agent, but its short isotopic half-life limits clinical high-throughput testing. This study retrospectively analyzed the imaging material of 100 lung cancer patients pathologically confirmed. Patients with lymph node metastasis were classified into the LM group (n = 30 cases), and those with no lymph node metastasis were classified into the NLM group (n = 70 cases). The results showed that MRI of superparamagnetic nanoferric oxide was better than diagnosis of lung cancer by the 18F-FDG PET/CT and had a high predictive power for lymph node metastasis. These turned out to be high-value lung cancer diagnosis of superparamagnetic nanoferric oxide MRI and high-capacity lymph node metastasis prediction of 18F-FDG PET/CT, which were worthy of implementation.
Collapse
|
9
|
Microarray analysis of genes with differential expression of m6A methylation in lung cancer. Biosci Rep 2021; 41:229351. [PMID: 34308964 PMCID: PMC8450313 DOI: 10.1042/bsr20210523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: N6-methyladenosine (m6A) is among the most abundant mRNA modifications in eukaryote. The aim of the present study was to investigate function of m6A mRNA methylation in lung cancer and the underlying mechanism. Methods: Microarray analysis was performed to detect the differences in RNA expression between cancerous and adjacent non-cancerous tissue samples. The target mRNAs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Hierarchical clustering of RNAs was conducted to identify distinct m6A methylation or expression patterns between the samples. Results: In the present study, some differentially expressed genes (DEGs) of mRNAs were identified, including up-regulated secret phosphoprotein 1 (SPP1) and down-regulated pRB. Functional enrichment analysis revealed that while differential hypermethylation was related to cell cycle, intracellular part and protein binding, the main pathway involved herpes simplex virus 1 infection related to down-regulated AKT, Araf1 and BCL2A1. In the meantime, sexual reproduction, cohesin complex and protein C-terminus binding was functionally linked to differential hypomethylation, while fluid shear stress and atherosclerosis were identified as the main pathways related to up-regulated GST and CNP. Conclusions: We showed that lung cancer development involved differential expression of SPP1 and pRB mRNA, as well as m6A mRNA methylation in AKT, APAF1, BCL2A1, GST and CNP genes.
Collapse
|
10
|
PAR2 Promoter Hypomethylation Regulates PAR2 Gene Expression and Promotes Lung Adenocarcinoma Cell Progression. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5542485. [PMID: 33968158 PMCID: PMC8081642 DOI: 10.1155/2021/5542485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022]
Abstract
Objective Protease-activated receptor-2 (PAR2) also known as F2RL1 is a G protein-coupled receptor that intimately correlates with cancer occurrence. DNA methylation turns out a vital mechanism regulating gene expression, while PAR2 promoter methylation is proven to be involved in cancer development. Hence, this study attempted to clarify the molecular mechanism by which PAR2 mediates lung adenocarcinoma (LUAD) progression, via identifying the effect of PAR2 promoter methylation on LUAD cell progression. Methods Associations of PAR2 promoter methylation with PAR2 gene expression and prognosis of LUAD patients were analyzed via bioinformatics analysis. PAR2 promoter methylation and gene expression at the cellular level were measured using methylation-specific PCR, qRT-PCR, and Western blot assays. DNA methyltransferase inhibitor 5-AzadC was used to treat cells to assess PAR2 gene expression alteration. Cell biological behaviors upon PAR2 overexpression were characterized via MTT, wound healing assay, and Transwell assay. Results Bioinformatics analysis revealed that PAR2 promoter methylation was negatively related to PAR2 gene expression, while PAR2 promoter hypermethylation and low gene expression indicated favorable LUAD prognosis. Besides, it turned out that PAR2 presented upregulated expression and hypomethylated promoter in LUAD cells. Moreover, PAR2 gene expression was elevated in cells treated with 5-AzadC, and the proliferative, migratory, and invasive capabilities of cells with 5-AzadC or high PAR2 gene expression were all enhanced. Conclusion In sum, PAR2 promoter hypomethylation potentiates LUAD cell progression, in turn affecting the prognosis of LUAD patients.
Collapse
|