1
|
Xu Y, Lv S, Li X, Zhai C, Shi Y, Li X, Feng Z, Luo G, Wang Y, Gao X. Photoaffinity probe-enabled discovery of sennoside A reductase in Bifidobacterium pseudocatenulatum. J Pharm Anal 2025; 15:101108. [PMID: 39902460 PMCID: PMC11788863 DOI: 10.1016/j.jpha.2024.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 02/05/2025] Open
Abstract
Sennoside A (SA), a typical prodrug, exerts its laxative effect only after its transformation into rheinanthrone catalyzed by gut microbial hydrolases and reductases. Hydrolases have been identified, but reductases remain unknown. By linking a photoreactive group to the SA scaffold, we synthesized a photoaffinity probe to covalently label SA reductases and identified SA reductases using activity-based protein profiling (ABPP). From lysates of an active strain, Bifidobacterium pseudocatenulatum (B. pseudocatenulatum), 397 proteins were enriched and subsequently identified using mass spectrometry (MS). Among these proteins, chromate reductase/nicotinamide adenine dinucleotide (NADH) phosphate (NADPH)-dependent flavin mononucleotide (FMN) reductase/oxygen-insensitive NADPH nitroreductase (nfrA) was identified as a potent SA reductase through further bioinformatic analysis and The Universal Protein Resource (UniProt) database screening. We also determined that recombinant nfrA could reduce SA. Our study contributes to further illuminating mechanisms of SA transformation to rheinanthrone and simultaneously offers an effective method to identify gut bacterial reductases.
Collapse
Affiliation(s)
| | | | | | - Chuanjia Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yulian Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuejiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhiyang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
2
|
Lv L, Shi Y, Deng Z, Xu J, Ye Z, He J, Chen G, Yu X, Wu J, Huang X, Li G. A polymeric nanocarrier that eradicates breast cancer stem cells and delivers chemotherapeutic drugs. Biomater Res 2023; 27:133. [PMID: 38102651 PMCID: PMC10722842 DOI: 10.1186/s40824-023-00465-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Drug nanocarriers can markedly reduce the toxicities and side effects of encapsulated chemotherapeutic drugs in the clinic. However, these drug nanocarriers have little effect on eradicating breast cancer stem cells (BCSCs). Although compounds that can inhibit BCSCs have been reported, these compounds are difficult to use as carriers for the widespread delivery of conventional chemotherapeutic drugs. METHODS Herein, we synthesize a polymeric nanocarrier, hyaluronic acid-block-poly (curcumin-dithiodipropionic acid) (HA-b-PCDA), and explore the use of HA-b-PCDA to simultaneously deliver chemotherapeutic drugs and eradicate BCSCs. RESULTS Based on molecular docking and molecular dynamics studies, HA-b-PCDA delivers 35 clinical chemotherapeutic drugs. To further verify the drug deliver ability of HA-b-PCDA, doxorubicin, paclitaxel, docetaxel, gemcitabine and camptothecin are employed as model drugs to prepare nanoparticles. These drug-loaded HA-b-PCDA nanoparticles significantly inhibit the proliferation and stemness of BCSC-enriched 4T1 mammospheres. Moreover, doxorubicin-loaded HA-b-PCDA nanoparticles efficiently inhibit tumor growth and eradicate approximately 95% of BCSCs fraction in vivo. Finally, HA-b-PCDA eradicates BCSCs by activating Hippo and inhibiting the JAK2/STAT3 pathway. CONCLUSION HA-b-PCDA is a polymeric nanocarrier that eradicates BCSCs and potentially delivers numerous clinical chemotherapeutic drugs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Yonghui Shi
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Zhicheng Deng
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, 516600, China
| | - Jiajia Xu
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zicong Ye
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jianxiong He
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Guanghui Chen
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaoxia Yu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Junyan Wu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| | - Xingzhen Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Guocheng Li
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, 516600, China.
| |
Collapse
|