1
|
Saito S, Yoshino H, Yokoyama S, Tominaga M, Li G, Arima J, Kawahara I, Fukuda I, Mitsuke A, Sakaguchi T, Inoguchi S, Matsushita R, Yamada Y, Tatarano S, Tanimoto A, Enokida H. Targeting Heat Shock Transcription Factor 4 Enhances the Efficacy of Cabozantinib and Immune Checkpoint Inhibitors in Renal Cell Carcinoma. Int J Mol Sci 2025; 26:1776. [PMID: 40004241 PMCID: PMC11855069 DOI: 10.3390/ijms26041776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) and cabozantinib, a tyrosine kinase inhibitor (TKI), have been used to treat renal cell carcinoma (RCC); the combination of these agents has become a standard treatment for RCC. TKIs generally target vascular endothelial growth factor. However, cabozantinib is characterized by its targeting of MET. Therefore, cabozantinib can be used as a late-line therapy for TKI-resistant RCC. According to data from The Cancer Genome Atlas (TCGA), heat shock transcription factor 4 (HSF4) expression is higher in RCC tissues than in normal renal tissues. HSF4 binds to the MET promoter in colorectal carcinoma to enhance MET expression and promote tumor progression. However, the functional role of HSF4 in RCC is unclear. We performed loss-of-function assays of HSF4, and our results showed that HSF4 knockdown in RCC cells significantly decreased cell functions. Moreover, MET expression was decreased in HSF4-knockdown cells but elevated in sunitinib-resistant RCC cells. The combination of cabozantinib and HSF4 knockdown reduced cell proliferation in sunitinib-resistant cells more than each monotherapy alone. Furthermore, HSF4 knockdown combined with an ICI showed synergistic suppression of tumor growth in vivo. Overall, our strategy involving HSF4 knockdown may enhance the efficacy of existing therapies, such as cabozantinib and ICIs.
Collapse
Affiliation(s)
- Saeki Saito
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Seiya Yokoyama
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (S.Y.); (A.T.)
| | - Mitsuhiko Tominaga
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Gang Li
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Junya Arima
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Ichiro Kawahara
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Ikumi Fukuda
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Akihiko Mitsuke
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Satoru Inoguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Yasutoshi Yamada
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (S.Y.); (A.T.)
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (S.S.); (M.T.); (G.L.); (J.A.); (I.K.); (I.F.); (A.M.); (T.S.); (S.I.); (R.M.); (Y.Y.); (S.T.); (H.E.)
| |
Collapse
|
2
|
Wang K, Ning S, Zhang S, Jiang M, Huang Y, Pei H, Li M, Tan F. Extracellular matrix stiffness regulates colorectal cancer progression via HSF4. J Exp Clin Cancer Res 2025; 44:30. [PMID: 39881364 PMCID: PMC11780783 DOI: 10.1186/s13046-025-03297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood. METHODS This study included 107 CRC patients. Tumour stiffness was assessed using magnetic resonance elastography (MRE), and collagen ratio was analysed with Masson staining. CRC cell lines were cultured on matrices of varying stiffness, followed by transcriptome sequencing to identify stiffness-related genes. An HSF4 knockout CRC cell model was cultured in different ECM stiffness to evaluate the effects of HSF4 on cell proliferation, migration, and invasion in vitro and in vivo. RESULTS CRC tumour stiffness was significantly higher than normal tissue and positively correlated with collagen content and TNM staging. High-stiffness matrices significantly regulated cell functions and signalling pathways. High HSF4 (heat shock transcriptional factor 4) expression was strongly associated with tumour stiffness and poor prognosis. HSF4 expression increased with higher TNM stages, and its knockout significantly inhibited cell proliferation, migration, and invasion, especially on high-stiffness matrices. In vivo experiments confirmed that HSF4 promoted tumour growth and metastasis, independent of collagen protein increase. CONCLUSIONS This study reveals that tumour stiffness promotes the proliferation and metastasis of CRC by regulating EMT-related signalling pathways through HSF4. Tumour stiffness and HSF4 could be valuable targets for prognostic assessment and therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Kangtao Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, Heidelberg, Baden-Württemberg, 69117, Germany
| | - Siyi Ning
- Clinical Laboratory, Changsha Stomatology Hospital, Changsha, Hunan, 410005, China
| | - Shuai Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mingming Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
- Hunan Provincial Key Laboratory of Neurorestoration, Changsha, Hunan, 410081, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Li
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China.
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China.
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
3
|
Alasady MJ, Mendillo ML. The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience. Cell Stress Chaperones 2024; 29:735-749. [PMID: 39454718 PMCID: PMC11570959 DOI: 10.1016/j.cstres.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss "the heat shock factor code"-our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Jiang N, Li D, Han Y, Luo ZG, Liu LB. Overexpression of zinc finger DHHC-type containing 1 is associated with poor prognosis and cancer cell growth and metastasis in uterine corpus endometrial carcinoma. Aging (Albany NY) 2024; 16:9784-9812. [PMID: 38848146 PMCID: PMC11210219 DOI: 10.18632/aging.205899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/09/2024] [Indexed: 06/09/2024]
Abstract
The zinc finger DHHC-type containing 1 (ZDHHC1) gene is implicated in the pathogenesis and progression of various malignant tumors, but its precise involvement in uterine corpus endometrial carcinoma (UCEC) remains unknown. Thus, this study investigated ZDHHC1 expression in UCEC using publicly available TCGA and Xena databases and elucidated the functions and mechanisms of the ZDHHC1 gene in UCEC progression using bioinformatics and in vitro experiments. The correlation between ZDHHC1 expression and prognosis, clinical features, immune cells, and RNA modifications of UCEC was evaluated using nomograms, correlation, ROC, and survival analyses. The impacts of ZDHHC1 overexpression on UCEC progression and mechanisms were explored with bioinformatics and in vitro experiments. Our study revealed that ZDHHC1 expression was significantly downregulated in UCEC and correlated with poor prognosis, cancer diagnosis, clinical stage, age, weight, body mass index, histological subtypes, residual tumor, tumor grade, and tumor invasion. Notably, Cox regression analysis and constructed nomograms showed that downregulated ZDHHC1 expression was a prognostic factor associated with poor prognosis in patients with UCEC. Conversely, above-normal ZDHHC1 expression inhibited the cell growth, cell cycle transition, migration, and invasion of UCEC cells, which may be related to the cell cycle, DNA replication, PI3K-AKT, and other pathways that promote tumor progression. Altered ZDHHC1 expression in UCEC was significantly associated with RNA modifications and the changes in cancer immune cell populations, such as CD56 bright NK cells, eosinophils, Th2 cells, and cell markers. In conclusion, considerably reduced ZDHHC1 expression in UCEC is associated with cancer cell growth, metastasis, poor prognosis, immune infiltration, and RNA modifications, revealing the promising potential of ZDHHC1 as a prognostic marker for UCEC.
Collapse
Affiliation(s)
- Ni Jiang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ye Han
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Guo Luo
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lu-Bin Liu
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Kato K, Noda T, Kobayashi S, Sasaki K, Iwagami Y, Yamada D, Tomimaru Y, Takahashi H, Uemura M, Asaoka T, Shimizu J, Doki Y, Eguchi H. KLK10 derived from tumor endothelial cells accelerates colon cancer cell proliferation and hematogenous liver metastasis formation. Cancer Sci 2024; 115:1520-1535. [PMID: 38475666 PMCID: PMC11093189 DOI: 10.1111/cas.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor endothelial cells (TECs), which are thought to be structurally and functionally different from normal endothelial cells (NECs), are increasingly attracting attention as a therapeutic target in hypervascular malignancies. Although colorectal liver metastasis (CRLM) tumors are hypovascular, inhibitors of angiogenesis are a key drug in multidisciplinary therapy, and TECs might be involved in the development and progression of cancer. Here, we analyzed the function of TEC in the CRLM tumor microenvironment. We used a murine colon cancer cell line (CT26) and isolated TECs from CRLM tumors. TECs showed higher proliferation and migration than NECs. Coinjection of CT26 and TECs yielded rapid tumor formation in vivo. Immunofluorescence analysis showed that coinjection of CT26 and TECs increased vessel formation and Ki-67+ cells. Transcriptome analysis identified kallikrein-related peptide 10 (KLK10) as a candidate target. Coinjection of CT26 and TECs after KLK10 downregulation with siRNA suppressed tumor formation in vivo. TEC secretion of KLK10 decreased after KLK10 downregulation, and conditioned medium after KLK10 knockdown in TECs suppressed CT26 proliferative activity. Double immunofluorescence staining of KLK10 and CD31 in CRLM tissues revealed a significant correlation between poor prognosis and positive KLK10 expression in TECs and tumor cells. On multivariate analysis, KLK10 expression was an independent prognostic factor in disease-free survival. In conclusion, KLK10 derived from TECs accelerates colon cancer cell proliferation and hematogenous liver metastasis formation. KLK10 in TECs might offer a promising therapeutic target in CRLM.
Collapse
Affiliation(s)
- Kazuya Kato
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Junzo Shimizu
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
6
|
Zhang WJ, Yue KL, Wang JZ, Zhang Y. Association between heat shock factor protein 4 methylation and colorectal cancer risk and potential molecular mechanisms: A bioinformatics study. World J Gastrointest Oncol 2023; 15:2150-2168. [PMID: 38173437 PMCID: PMC10758642 DOI: 10.4251/wjgo.v15.i12.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND We previously demonstrated that heat shock factor protein 4 (HSF4) facilitates colorectal cancer (CRC) progression. DNA methylation, a major modifier of gene expression and stability, is involved in CRC development and outcome. AIM To investigate the correlation between HSF4 methylation and CRC risk, and to uncover the underlying molecular mechanisms. METHODS Differences in β values of HSF4 methylation loci in multiple malignancies and their correlation with HSF4 mRNA expression were analyzed based on Shiny Methylation Analysis Resource Tool. HSF4 methylation-related genes were identified by LinkedOmics in CRC, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. Protein-protein interaction network of HSF4 methylation-related genes was constructed by String database and MCODE algorithm. RESULTS A total of 19 CpG methylation loci were identified in HSF4, and their β values were significantly increased in CRC tissues and exhibited a positive correlation with HSF4 mRNA expression. Unfortunately, the prognostic and diagnostic performance of these CpG loci in CRC patients was mediocre. In CRC, there were 1694 HSF4 methylation-related genes; 1468 of which displayed positive and 226 negative associations, and they were involved in regulating phenotypes such as immune, inflammatory, and metabolic reprogramming. EGFR, RELA, STAT3, FCGR3A, POLR2K, and AXIN1 are hub genes among the HSF4 methylation-related genes. CONCLUSION HSF4 is highly methylated in CRC, but there is no significant correlation between it and the prognosis and diagnosis of CRC. HSF4 methylation may serve as one of the ways in which HSF4 mediates the CRC process.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- Department of Medical Oncology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Ke-Lin Yue
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Jing-Zhai Wang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Yu Zhang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| |
Collapse
|
7
|
Lou F, Zhang M. RFC2 promotes aerobic glycolysis and progression of colorectal cancer. BMC Gastroenterol 2023; 23:353. [PMID: 37821801 PMCID: PMC10566032 DOI: 10.1186/s12876-023-02984-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Replication factor C subunit 2 (RFC2) participates in the growth and metastasis of various malignancies. Our study investigated the roles of RFC2 in colorectal cancer (CRC). RESULTS RFC2 expression was upregulated in CRC tissues and cells. High RFC2 expression was associated with poor prognosis. Knockdown RFC2 inhibited proliferation, induced apoptosis, and suppressed migration and invasion of CRC cells. CREB5 was a transcription factor of RFC2, and CREB5 knockdown suppressed RFC2 expression. Furthermore, RFC2 promoted aerobic glycolysis and MET/PI3K/AKT/mTOR pathway. CONCLUSION RFC2 promoted the progression of CRC cells via activating aerobic glycolysis and the MET/PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Fuchen Lou
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, P.R. China
| | - Mingbao Zhang
- Department of Gastroenterology, The Second Hospital of Shandong University, Beiyuan Street 247,Tianqiao District, Jinan, Shandong, 250033, P.R. China.
| |
Collapse
|
8
|
Sheta M, Yoshida K, Kanemoto H, Calderwood SK, Eguchi T. Stress-Inducible SCAND Factors Suppress the Stress Response and Are Biomarkers for Enhanced Prognosis in Cancers. Int J Mol Sci 2023; 24:5168. [PMID: 36982267 PMCID: PMC10049278 DOI: 10.3390/ijms24065168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The cell stress response is an essential system present in every cell for responding and adapting to environmental stimulations. A major program for stress response is the heat shock factor (HSF)-heat shock protein (HSP) system that maintains proteostasis in cells and promotes cancer progression. However, less is known about how the cell stress response is regulated by alternative transcription factors. Here, we show that the SCAN domain (SCAND)-containing transcription factors (SCAN-TFs) are involved in repressing the stress response in cancer. SCAND1 and SCAND2 are SCAND-only proteins that can hetero-oligomerize with SCAN-zinc finger transcription factors, such as MZF1(ZSCAN6), for accessing DNA and transcriptionally co-repressing target genes. We found that heat stress induced the expression of SCAND1, SCAND2, and MZF1 bound to HSP90 gene promoter regions in prostate cancer cells. Moreover, heat stress switched the transcript variants' expression from long noncoding RNA (lncRNA-SCAND2P) to protein-coding mRNA of SCAND2, potentially by regulating alternative splicing. High expression of HSP90AA1 correlated with poorer prognoses in several cancer types, although SCAND1 and MZF1 blocked the heat shock responsiveness of HSP90AA1 in prostate cancer cells. Consistent with this, gene expression of SCAND2, SCAND1, and MZF1 was negatively correlated with HSP90 gene expression in prostate adenocarcinoma. By searching databases of patient-derived tumor samples, we found that MZF1 and SCAND2 RNA were more highly expressed in normal tissues than in tumor tissues in several cancer types. Of note, high RNA expression of SCAND2, SCAND1, and MZF1 correlated with enhanced prognoses of pancreatic cancer and head and neck cancers. Additionally, high expression of SCAND2 RNA was correlated with better prognoses of lung adenocarcinoma and sarcoma. These data suggest that the stress-inducible SCAN-TFs can function as a feedback system, suppressing excessive stress response and inhibiting cancers.
Collapse
Affiliation(s)
- Mona Sheta
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Kunihiro Yoshida
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Takanori Eguchi
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|