1
|
Qin F, Zhang L, Shao L, Li J, Yang J, Zhai P, Zhang X. Supplementation of Arginine or N-Carbamylglutamate Affects Jejunum Development, Global Arginine Bioavailability Ratio, and Stress-Related Indices in Young Rex Rabbits. Animals (Basel) 2025; 15:1354. [PMID: 40427232 PMCID: PMC12108443 DOI: 10.3390/ani15101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/20/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
This study aimed to investigate the effects of arginine (Arg) or N-carbamylglutamate (NCG) on jejunum development, the global arginine bioavailability ratio (GABR), and stress-related indices in young rex rabbits. Forty-five litters of newborn rabbits with similar litter weights and sizes were randomly divided into five groups and fed a basal diet (con group), basal diet + 0.3% Arg (0.3% Arg group), basal diet + 0.6% Arg (0.6% Arg group), basal diet + 0.03% NCG (0.03% NCG group), or basal diet + 0.06% NCG (0.06% NCG group). After weaning at 35 days, eight healthy young rabbits with similar body weights were selected from each group and slaughtered on the 36th day. Serum and jejunum samples were collected for index analysis. Arg or NCG significantly affected the jejunum structure development in the young rabbits. The villus height (V) in the treatment groups was significantly higher than that in the con group (p < 0.05) and was highly significantly improved in the 0.6% Arg group (p < 0.01). The crypt depth (C) in 0.6% Arg and 0.06% NCG groups was significantly lower than that in the con, 0.3% Arg, and 0.03% NCG groups (p < 0.05). Compared with the con group, the V/C ratio was significantly increased in the treatment groups (p < 0.05) and was excessively and significantly increased in the 0.6% Arg and 0.06% NCG groups (p < 0.01). Compared with the con group, the Nitric-Oxide (NO) levels and inducible Nitric-Oxide Synthase (iNOS) activity in serum were significantly increased in the treatment groups. The NO levels in the jejunum were also increased in the treatment groups; however, there were no significant differences (p > 0.05). The iNOS activity and mRNA expression in the jejunum of the 0.6% Arg and 0.06% NCG groups were significantly higher than those in the con group (p < 0.05). Compared with the con group, the concentration of serum corticosterone in the 0.3% Arg, 0.6% Arg, and 0.06% NCG groups was significantly reduced. Adding Arg or NCG to the basal diet significantly increased the concentration and gene mRNA expression levels of heat shock protein 70 (HSP70) in the jejunum (p < 0.05). The expression level in the 0.6% Arg and 0.06% NCG groups was significantly higher than that in the con group (p < 0.01). At 36 days, Arg and NCG improved the GABR. In the 0.6% Arg group, the GABR was increased by 16.92%. The GABR was <0.8 at the time of weaning. The Arg levels in the body did not meet the needs of the young animals. In the trial, Arg or NCG supplementation in the diet significantly increased iNOS activity and gene mRNA expression, promoting NO synthesis. Thus, it can improve jejunal morphological and structural development. Adding Arg or NCG increased HSP70 mRNA expression levels, enhanced intestinal stress tolerance, and improved intestinal health. During the lactation period, adding Arg or NCG increased the GABR, but the GABR was <0.8 during weaning.
Collapse
Affiliation(s)
- Feng Qin
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.Q.); (L.S.); (J.L.); (J.Y.); (X.Z.)
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Linlin Zhang
- College of Life Science, Longyan University, Longyan 364012, China;
| | - Le Shao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.Q.); (L.S.); (J.L.); (J.Y.); (X.Z.)
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jian Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.Q.); (L.S.); (J.L.); (J.Y.); (X.Z.)
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jie Yang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.Q.); (L.S.); (J.L.); (J.Y.); (X.Z.)
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Pin Zhai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.Q.); (L.S.); (J.L.); (J.Y.); (X.Z.)
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xia Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.Q.); (L.S.); (J.L.); (J.Y.); (X.Z.)
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
2
|
Hyperleucinosis during infections in maple syrup urine disease post liver transplantation. Mol Genet Metab Rep 2021; 27:100763. [PMID: 33996492 PMCID: PMC8102797 DOI: 10.1016/j.ymgmr.2021.100763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Maple syrup urine disease (MSUD) is due to biallelic variants in one of the three genes: BCKDHA, BCKDHB, and DBT. Branched-chain alpha-ketoacid dehydrogenase complex deficiency and elevated leucine, valine, isoleucine and alloisoleucine in body fluids are the results. We report hyperleucinosis during intercurrent illnesses in six patients with MSUD post liver transplantation. Patient charts were retrospectively reviewed. Data was entered into an Excel Database. Literature was reviewed. Six patients with MSUD were included who had post liver transplantation hyperleucinosis during an intercurrent illness. Five had encephalopathy. One received hemodialysis for the management of hyperleucinosis. All patients had unrestricted diet. Additionally, there were five patients (one patient included into the current study) reported in the literature. We suggested management considerations for the follow-up of patients with MSUD post liver transplantation after the first episode of unexplained encephalopathy or signs of acute hyperleucinosis during intercurrent illness due to our clinical experience: 1) Healthy: Unrestricted diet and monitoring of leucine levels; 2) Illness: a) home illness management: increased carbohydrate intake b) illness management at hospital: intravenous dextrose, intravenous lipid and daily plasma amino acid monitoring. We report hyperleucinosis and/or encephalopathy as a rare event post liver transplantation in MSUD as a multicenter case series. Hyperleucinosis and/or encephalopathy may occur in both related and unrelated donor liver transplantation. Based on the long-term follow-up of those patients, these suggested management considerations may be revised as per the patients' needs. Patients with MSUD can present with hyperleucinosis during intercurrent illness post liver transplantation. Hyperleucinosis in MSUD post liver transplantation can occur in related and unrelated donor liver transplantation. Monitoring of patients with MSUD is required after their first episode of hyperleucinosis post liver transplantation.
Collapse
|
3
|
Determination of N-Carbamylglutamate in Feeds and Animal Products by High Performance Liquid Chromatography Tandem Mass Spectrometry. Molecules 2019; 24:molecules24173172. [PMID: 31480464 PMCID: PMC6749331 DOI: 10.3390/molecules24173172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022] Open
Abstract
N-carbamylglutamate (NCG), a synthetic analogue of N-acetylglutamate, is an activator of blood ammonia conversion and endogenous arginine synthesis. Here, we established an accurate quantitative determination of NCG in feeds, animal tissues, and body fluids using the high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The sample pretreatment procedures included extraction with 0.5% of formic acid in water/methanol (80/20, v/v), and purification using an anionic solid phase extraction cartridge. Satisfactory separation of NCG was achieved in 20 min with the application of an Atlantis T3 column, and a confirmative detection of NCG was ensured by multiple reaction monitoring of positive ions. NCG spiked in feeds, tissues, and body fluids were evaluated in regard to linearity, sensitivity, recovery, and repeatability. Recoveries for different sample matrices were in the range of 88.12% to 110.21% with relative standard deviations (RSDs) less than 8.8%. Limits of quantification were within the range of 0.012 to 0.073 mg kg−1 and 0.047 to 0.077 μg mL−1 for solid and liquid samples, respectively. This study will provide a solid foundation for the evaluation of availability and metabolic mechanism of NCG in animals.
Collapse
|
4
|
Mo W, Wu X, Jia G, Zhao H, Chen X, Tang J, Wu C, Cai J, Tian G, Wang J, Liu G. Roles of dietary supplementation with arginine or N-carbamylglutamate in modulating the inflammation, antioxidant property, and mRNA expression of antioxidant-relative signaling molecules in the spleen of rats under oxidative stress. ACTA ACUST UNITED AC 2018; 4:322-328. [PMID: 30175262 PMCID: PMC6116323 DOI: 10.1016/j.aninu.2018.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/08/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022]
Abstract
This study evaluated the effects of arginine (Arg) or N-carbamylglutamate (NCG) on inflammation, antioxidant property, and antioxidant-related gene expression in rat spleen under oxidative stress. A total of 52 rats were randomly distributed into 4 treatment groups with 13 replicates per group. Rats were fed a basal diet (BD) or BD supplemented with Arg or NCG for 30 days. On day 28, half of the BD-fed rats were intraperitoneally injected with sterile saline (control group), and the other half with 12 mg/kg body weight of diquat (DT; DT group). The other 2 diet groups were intraperitoneally injected with 12 mg/kg body weight of DT with either Arg (1%) (DT + Arg) or NCG (0.1%) (DT + NCG). Rat spleen samples were collected for analysis at 48 h after DT injection. Results showed that DT damaged the antioxidant defense in rats compared with the control group (P < 0.05). Compared with the DT group, the DT + Arg and DT + NCG groups manifested improved anti-hydroxyl radical, catalase, and total superoxide dismutase (T-SOD) activities, increased glutathione content (P < 0.05), and decreased malondialdehyde content (P < 0.05). Moreover, compared with the DT group, the DT + Arg and DT + NCG groups enhanced mRNA expression of superoxide dismutase (SOD), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1(Keap-1), and mammalian target of rapamycin (mTOR) (P < 0.05). Both NCG and Arg significantly increased anti-inflammatory cytokine mRNA level but suppressed the pro-inflammatory cytokine mRNA expression under oxidative stress (P < 0.05). In summary, NCG and Arg effectively alleviated oxidative stress, improved the antioxidant capacity and regulated the antioxidant-related signaling molecular expression in rat spleen. N-carbamylglutamate and Arg reduced the inflammation in the spleen by mediating the gene expression of anti-inflammatory and pro-inflammatory cytokines and transforming growth factor-β (TGF-β).
Collapse
Affiliation(s)
- Weiwei Mo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xianjian Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
- Corresponding author.
| |
Collapse
|
5
|
Feng T, Schütz LF, Morrell BC, Perego MC, Spicer LJ. Effects of N-carbamylglutamate and L-arginine on steroidogenesis and gene expression in bovine granulosa cells. Anim Reprod Sci 2017; 188:85-92. [PMID: 29150243 DOI: 10.1016/j.anireprosci.2017.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
Feeding N-carbamylglutamate (NCG) and arginine (ARG) improves reproductive measures in pigs and reduces systemic steroid levels in pregnant ewes. We hypothesized that the effects of NCG and ARG on reproduction were due to direct effects on the ovary. Thus, the objectives of this study were to investigate the effects of NCG and ARG on granulosa cell (GC) steroidogenesis, gene expression, and cell proliferation in vitro. GC were collected from small (1-5mm) bovine follicles and treated in vitro with NCG or ARG in serum-free medium for 24h to 48h. Both NCG and ARG inhibited (P<0.05) IGF1- and FSH-induced GC estradiol production but only NCG inhibited (P<0.05) progesterone production. In contrast, NCG and ARG increased (P<0.05) GC numbers induced by IGF1 and FSH. NCG inhibited (P<0.05) StAR, CYP11A1 and CYP19A1 mRNA abundance in small-follicle GC, whereas ARG had no effect (P>0.10) on StAR, CYP11A1 or CYP19A1 mRNA abundance. We conclude that NCG and ARG may act directly on GC and therefore may regulate ovarian function by slowing follicular differentiation via inhibiting IGF1 action, and steroid synthesis while stimulating GC proliferation in cattle.
Collapse
Affiliation(s)
- T Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - B C Morrell
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - M C Perego
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
6
|
Chapel-Crespo CC, Diaz GA, Oishi K. Efficacy of N-carbamoyl-L-glutamic acid for the treatment of inherited metabolic disorders. Expert Rev Endocrinol Metab 2016; 11:467-473. [PMID: 30034506 PMCID: PMC6054484 DOI: 10.1080/17446651.2016.1239526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION N-carbamoyl-L-glutamic acid (NCG) is a synthetic analogue of N-acetyl glutamate (NAG) that works effectively as a cofactor for carbamoyl phosphate synthase 1 and enhances ureagenesis by activating the urea cycle. NCG (brand name, Carbaglu) was recently approved by the United States Food and Drug Administration (US FDA) for the management of NAGS deficiency and by the European Medicines Agency (EMA) for the treatment of NAGS deficiency as well as for the treatment of hyperammonenia in propionic, methylmalonic and isovaleric acidemias in Europe. AREAS COVERED The history, mechanism of action, and efficacy of this new drug are described. Moreover, clinical utility of NCG in a variety of inborn errors of metabolism with secondary NAGS deficiency is discussed. EXPERT COMMENTARY NCG has favorable pharmacological features including better bioavailability compared to NAG. The clinical use of NCG has proven to be so effective as to make dietary protein restriction unnecessary for patients with NAGS deficiency. It has been also demonstrated to be effective for hyperammonemia secondary to other types of inborn errors of metabolism. NCG may have additional therapeutic potential in conditions such as hepatic hyperammonemic encephalopathy secondary to chemotherapies or other liver pathology.
Collapse
Affiliation(s)
- Cristel C Chapel-Crespo
- Department of Genetics and Genomic Sciences, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George A Diaz
- Department of Genetics and Genomic Sciences, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Cao W, Xiao L, Liu G, Fang T, Wu X, Jia G, Zhao H, Chen X, Wu C, Cai J, Wang J. Dietary arginine and N-carbamylglutamate supplementation enhances the antioxidant statuses of the liver and plasma against oxidative stress in rats. Food Funct 2016; 7:2303-11. [PMID: 27109002 DOI: 10.1039/c5fo01194a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Carbamylglutamate (NCG), an effective precursor of arginine (ARG), can enhance ARG synthesis, increase intestinal growth, and improve reproductive performance. However, the antioxidant effect of NCG remains largely unknown. This study aims to survey the effects of ARG and NCG supplementation on the antioxidant statuses of the liver and plasma in rats under oxidative stress. Rats were fed for 30 days with one of the three iso-nitrogenous diets: basal diet (BD), BD plus 1% ARG, and BD plus 0.1% NCG. On day 28, half of the rats fed with BD were intraperitoneally injected with 12 mg per kg body weight of diquat (diquat group) and the other half was injected intraperitoneally with sterile 0.9% NaCl solution (control group). The other diet groups also received an intraperitoneal injection of 12 mg per kg body weight of diquat, as follows: diquat + 1% ARG (DT + ARG), and diquat + 0.1% NCG (DT + NCG). Rat liver and plasma samples obtained 48 h after diquat injection were analyzed. Results indicated that diquat significantly affected the plasma conventional biochemical components (relative to the controls), which were partially alleviated in both the DT + ARG and DT + NCG groups (P < 0.05). Diquat also significantly decreased the glutathione (GSH) content (by 30.0%), and decreased anti-superoxide anion (ASA; by 13.8%) and anti-hydroxyl radical (AHR; by 38.9%) abilities in the plasma, and also decreased catalase (CAT) activity both in the liver (by 17.5%) and plasma (by 33.4%) compared with the control group. By contrast, diquat increased the malondialdehyde (MDA) content (by 23.0%) in the plasma (P < 0.05) compared with the control group. Relative to those of the diquat group, higher CAT activity and GSH content were noted in the plasma of the DT + ARG group and in the liver of both DT + ARG and DT + NCG groups (P < 0.05). Furthermore, the DT + ARG group exhibited significantly enhanced plasma ASA activity (P < 0.05). The DT + NCG group showed significantly improved total antioxidant capacity (T-AOC) in the liver and plasma (P < 0.05). Increased GSH content and elevated ASA and AHR activities were also found, but the MDA content in the plasma was depleted (P < 0.05). Compared with the DT + ARG group, the DT + NCG group showed increased liver and plasma T-AOC, enhanced plasma AHR activity, increased liver ASA activity, and decreased plasma MDA content (P < 0.05). Overall, supplementation of 1% ARG and 0.1% NCG can partially protect the liver and plasma from oxidative stress. Furthermore, compared with 1% ARG, 0.1% NCG more effectively alleviated oxidative stress.
Collapse
Affiliation(s)
- Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xiao L, Cao W, Liu G, Fang T, Wu X, Jia G, Chen X, Zhao H, Wang J, Wu C, Cai J. Arginine, N-carbamylglutamate, and glutamine exert protective effects against oxidative stress in rat intestine. ACTA ACUST UNITED AC 2016; 2:242-248. [PMID: 29767095 PMCID: PMC5941035 DOI: 10.1016/j.aninu.2016.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
The objective of the current study is to evaluate the effects of dietary supplementation with arginine (ARG), N-carbamylglutamate (NCG), and glutamine (GLN) on rat intestinal morphology and antioxidant status under oxidative stress. Rats were fed for 30 d with one of the following iso-nitrogenous diets: basal diet (BD), BD plus 1% ARG, BD plus 0.1% NCG, and BD plus 1% GLN. On day 28, half of the rats fed BD were intraperitoneally injected with 12 mg/kg body weight of diquat (DT; i.e., the DT group) and the other half was intraperitoneally injected with sterile solution (i.e., the control group). The other diet groups were intraperitoneally injected with 12 mg/kg body weight of DT (i.e., DT + 1% GLN [DT + GLN], DT + 1% ARG [DT + ARG], and DT + 0.1% NCG [DT + NCG]). Rat jejunum samples obtained at 48 h after DT injection were analyzed. Results showed that DT significantly decreased catalase (CAT) activity and glutathione (GSH) content by 58.25% and 56.57%, respectively, and elevated malondialdehyde (MDA) content and crypt depth (CD) by 19.39% and 22.13%, respectively, in the jejunum (P < 0.05, relative to the control group). Compared with the DT group, the DT + GLN group exhibited significantly improved villus height (VH), villus width (VW), villus surface area (VSA), CD and total antioxidant capacity (T-AOC) activity (P < 0.05); the DT + ARG group exhibited significantly increased the ratio of VH to CD (H:D) and T-AOC activity (P < 0.05); the DT + GLN, DT + ARG and DT + NCG groups exhibited significantly enhanced CAT activity and GSH content as well as decreased MDA content (P < 0.05). Moreover, VH, VW, VSA, CD and GSH content in the DT + GLN group were higher whereas MDA content was lower compared with the corresponding values observed in both the DT + ARG and the DT + NCG groups (P < 0.05). The H:D ratio in the DT + ARG group significantly increased compared with that in the DT + NCG and DT + GLN groups (P < 0.05). Collectively, this study suggested that dietary supplementation with 1% GLN, 0.1% NCG, and 1% ARG was effective in enhancing the antioxidant status and maintaining the morphological structure of rat jejunum under oxidative stress; of these supplements, 1% GLN exerted the greatest effects on mitigating oxidative stress.
Collapse
Affiliation(s)
- Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xianjian Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| |
Collapse
|
9
|
Li X, Ding Y, Liu Y, Ma Y, Song J, Wang Q, Li M, Qin Y, Yang Y. Eleven novel mutations of the BCKDHA, BCKDHB and DBT genes associated with maple syrup urine disease in the Chinese population: Report on eight cases. Eur J Med Genet 2015; 58:617-23. [PMID: 26453840 DOI: 10.1016/j.ejmg.2015.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 12/01/2022]
Abstract
Maple syrup urine disease (MSUD) is a rare autosomal recessive disorder that affects the degradation of branched chain amino acids (BCAAs). Only a few cases of MSUD have been documented in Mainland China, and prenatal diagnosis has not been performed so far. In this report, 8 patients (4 girls and 4 boys) with MSUD from 8 unrelated Chinese families were diagnosed at the age of 9 days to 1 year and 8 months. The diagnosis was confirmed by serum BCAAs and genetic analyses. Among the 8 patients, only one was detected by newborn screening. The remaining 7 patients were admitted because of neurological disorders and underwent selective screening. Significantly elevated BCAAs were observed in 7 patients. One patient was diagnosed by post-mortem study. 12 mutations were found in the BCKDHA, BCKDHB and DBT genes. 11 of these mutations were novel: c.178G > T, c.491T > C, c.740A > G, c.1214_1219dupCCAACC and IVS6+1delG in BCKDHA; c.482T > G, c.508C > T, c.767A > G, c.768C > G and IVS4,-2A > C in BCKDHB; and c.1A > G in DBT. Only one mutation, c.659C > T in the BCKDHA gene, had been previously reported. 7 patients were treated by dietary intervention and symptomatic therapy. 6 of them showed clinical improvement. The mother of one patient who died from MSUD underwent amniocentesis during her second pregnancy. The BCAAs level in her amniotic fluid was normal. Only one heterozygous mutation, IVS4,-2A > C in the BCKDHB gene, was detected in the cultured amniocytes. The results revealed that the fetus was not affected by MSUD. Normal development and the blood BCAAs profile confirmed the prenatal diagnosis after birth. Thus, we identified eleven novel mutations associated with MSUD in the Chinese population. Prenatal diagnosis of MSUD was successfully performed on one fetus by genetic analysis of the cultured amniocytes.
Collapse
Affiliation(s)
- Xiyuan Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yuan Ding
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yupeng Liu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yanyan Ma
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Qiao Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | | | | | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
10
|
Wu X, Wan D, Xie C, Li T, Huang R, Shu X, Ruan Z, Deng Z, Yin Y. Acute and sub-acute oral toxicological evaluations and mutagenicity of N-carbamylglutamate (NCG). Regul Toxicol Pharmacol 2015; 73:296-302. [PMID: 26188117 DOI: 10.1016/j.yrtph.2015.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/12/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022]
Abstract
N-carbamylglutamate (NCG) is a metabolically stable analog of N-acetylglutamate that activates carbamyl phosphate synthase-1, a key arginine synthesis enzyme in enterocytes. It is a promising feed additive in swine in China. In this study, we assessed the acute and sub-acute toxicity of NCG in Sprague-Dawley (SD) rats. All rats survived until they were killed at a scheduled time point. No adverse effects or mortality was observed following acute oral administration of 5000 mg/kg NCG to SD rats. No biologically significant or test substance-related differences were observed in body weights, feed consumption, clinical signs, a functional observational battery, organ weights, histopathology, ophthalmology, hematology, coagulation, and clinical chemistry parameters in any of the treatment groups in sub-acute doses of NCG at target concentrations corresponding to 500, 2000, and 3000 mg/kg/day for 28 days neither. In addition, no evidence of mutagenicity or genotoxicity was found, either in vitro in bacterial reverse mutation assay or in vivo in mice bone marrow micronucleus assay and sperm shape abnormality assay. On the basis of our findings, we conclude that NCG is a non-toxic substance with no genotoxicity.
Collapse
Affiliation(s)
- Xin Wu
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Dan Wan
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Chunyan Xie
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Tiejun Li
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ruilin Huang
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xugang Shu
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China; Guangzhou Tanke BIO-TECH Co. Ltd., Guangzhou 510800, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Yulong Yin
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
11
|
Zeng X, Huang Z, Mao X, Wang J, Wu G, Qiao S. N-carbamylglutamate enhances pregnancy outcome in rats through activation of the PI3K/PKB/mTOR signaling pathway. PLoS One 2012; 7:e41192. [PMID: 22848442 PMCID: PMC3407155 DOI: 10.1371/journal.pone.0041192] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/18/2012] [Indexed: 12/26/2022] Open
Abstract
Administration of N-carbamylglutamate (NCG), an analogue of endogenous N-acetyl-glutamate (an activator of arginine synthesis) has been shown to enhance neonatal growth by increasing circulating arginine levels. However, the effect of NCG on pregnancy remains unknown. This study examined the effects of NCG on pregnancy outcome and evaluated potential mechanisms involved. Reproductive performance, embryo implantation, and concentration of amino acids in serum and uterine flushing, were determined in rats fed control or NCG supplemented diets. Ishikawa cells and JAR cells were used to examine the mechanism by which NCG affects embryo implantation. Dietary NCG supplementation increased serum levels of arginine, onithine, and proline, as well as uterine levels of arginine, glutamine, glutamate, and proline. Additionally, it stimulated LIF expression, and enhanced the activation of signal transduction and activator of transcription 3 (Stat3), protein kinase B (PKB), and 70-kDa ribosomal protein S6 kinase (S6K1) during the periimplantation period, resulting in an increase in litter size but not birth weight. In uterine Ishikawa cells, LIF expression was also enhanced by treatment with arginine and its metabolites. In trophoblast JAR cells, treatment with arginine and its metabolites enhanced Stat3, PKB, and S6K1 activation and facilitated cellular adhesion activity. These effects were abolished by pretreatment with inhibitors of phosphatidylinositol 3-kinase (wortmannin) and mammalian target of rapamycin (rapamycin). The results demonstrate that NCG supplementation enhances pregnancy outcome and have important implications for the pregnancy outcome of mammalian species.
Collapse
Affiliation(s)
- Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhimin Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Xiangbing Mao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol 2012; 27:207-22. [PMID: 21431427 DOI: 10.1007/s00467-011-1838-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/09/2011] [Accepted: 01/12/2011] [Indexed: 12/31/2022]
Abstract
Ammonia is an important source of nitrogen and is required for amino acid synthesis. It is also necessary for normal acid-base balance. When present in high concentrations, ammonia is toxic. Endogenous ammonia intoxication can occur when there is impaired capacity of the body to excrete nitrogenous waste, as seen with congenital enzymatic deficiencies. A variety of environmental causes and medications may also lead to ammonia toxicity. Hyperammonemia refers to a clinical condition associated with elevated ammonia levels manifested by a variety of symptoms and signs, including significant central nervous system (CNS) abnormalities. Appropriate and timely management requires a solid understanding of the fundamental pathophysiology, differential diagnosis, and treatment approaches available. The following review discusses the etiology, pathogenesis, differential diagnosis, and treatment of hyperammonemia.
Collapse
|
13
|
Häberle J. Role of carglumic acid in the treatment of acute hyperammonemia due to N-acetylglutamate synthase deficiency. Ther Clin Risk Manag 2011; 7:327-32. [PMID: 21941437 PMCID: PMC3176164 DOI: 10.2147/tcrm.s12703] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
N-acetylglutamate synthase (NAGS) deficiency is a rare inborn error of metabolism affecting ammonia detoxification in the urea cycle. The product of NAGS is N-acetylglutamate which is the absolutely required allosteric activator of the first urea cycle enzyme carbamoylphosphate synthetase 1. In defects of NAGS, the urea cycle function can be severely affected resulting in fatal hyperammonemia in neonatal patients or at any later stage in life. NAGS deficiency can be treated with a structural analog of N-acetylglutamate, N-carbamyl-L-glutamate, which is available for enteral use as a licensed drug. Since NAGS deficiency is an extremely rare disorder, reports on the use of N-carbamyl-L-glutamate are mainly based on single patients. According to these, the drug is very effective in treating acute hyperammonemia by avoiding the need for detoxification during the acute metabolic decompensation. Also during long-term treatment, N-carbamyl-L-glutamate is effective in maintaining normal plasma ammonia levels and avoiding the need for additional drug therapy or protein-restricted diet. Open questions remain which concern the optimal dosage in acute and long-term use of N-carbamyl-L-glutamate and potential additional disorders in which the drug might also be effective in treating acute hyperammonemia. This review focuses on the role of N-carbamyl-L-glutamate for the treatment of acute hyperammonemia due to primary NAGS deficiency but will briefly discuss the current knowledge on the role of N-carbamyl-L-glutamate for treatment of secondary NAGS deficiencies.
Collapse
Affiliation(s)
- Johannes Häberle
- Kinderspital Zürich, Abteilung Stoffwechsel, Zürich, Switzerland
| |
Collapse
|
14
|
Daniotti M, la Marca G, Fiorini P, Filippi L. New developments in the treatment of hyperammonemia: emerging use of carglumic acid. Int J Gen Med 2011; 4:21-8. [PMID: 21403788 PMCID: PMC3056327 DOI: 10.2147/ijgm.s10490] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hyperammonemia is a true neonatal emergency with high toxicity for the central nervous system and developmental delay. The causes of neonatal hyperammonemia are genetic defects of urea cycle enzymes, organic acidemias, lysinuric protein intolerance, hyperammonemia-hyperornithinemia- homocitrullinemia syndrome, transient hyperammonemia of the newborn, and congenital hyperinsulinism with hyperammonemia. In some of these conditions the high blood ammonia levels are due to the reduction of N-acetylglutamate, an essential cofactor necessary for the function of the urea cycle, or to the reduction of carbamoyl-phosphate synthase-I activity. In these cases, N-carbamylglutamate (carglumic acid) can be administered together with the conventional therapy. Carglumic acid is an analog of N-acetylglutamate that has a direct action on carbamoyl-phosphate synthase-I. Its effects are reactivation of the urea cycle and reduction of plasma ammonia levels. As a consequence it improves the traditional treatment, avoiding the need of hemodialysis and peritoneal dialysis. In this review we evaluate the possible field of application of carglumic acid and its effectiveness and safety.
Collapse
Affiliation(s)
- Marta Daniotti
- Neonatal Intensive Care Unit, Department of Perinatal Medicine, “A. Meyer” University Children’s Hospital, Florence, Italy
| | - Giancarlo la Marca
- Mass Spectrometry, Clinical Chemistry and Pharmacology Laboratory, Neuroscience Department, “A. Meyer” University Children’s Hospital, Florence, Italy
| | - Patrizio Fiorini
- Neonatal Intensive Care Unit, Department of Perinatal Medicine, “A. Meyer” University Children’s Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Department of Perinatal Medicine, “A. Meyer” University Children’s Hospital, Florence, Italy
| |
Collapse
|
15
|
Lilliu F. Treatment of organic acidurias and urea cycle disorders. J Matern Fetal Neonatal Med 2010; 23 Suppl 3:73-5. [DOI: 10.3109/14767058.2010.509932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|