1
|
Bi D, Bao H, Yang X, Wu Z, Yang X, Xu G, Liu X, Wan Z, Liu J, He J, Wen L, Jing Y, Zhu R, Long Z, Rong Y, Wang D, Wang X, Xiong W, Huang G, Gao F, Shen Y. BACE1-dependent cleavage of GABA A receptor contributes to neural hyperexcitability and disease progression in Alzheimer's disease. Neuron 2025; 113:1051-1064.e6. [PMID: 40015276 DOI: 10.1016/j.neuron.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/15/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Neural hyperexcitability has been clinically associated with amyloid-β (Aβ) pathology and cognitive impairment in Alzheimer's disease (AD). Here, we show that decreased GABAA receptor (GABAAR) currents are linked to hippocampal granule cell hyperexcitability in the AD mouse model APP23. Elevated levels of β-secretase (BACE1), the β-secretase responsible for generating Aβ peptides, lead to aberrant cleavage of GABAAR β1/2/3 subunits in the brains of APP23 mice and AD patients. Moreover, BACE1-dependent cleavage of the β subunits leads to a decrease in GABAAR-mediated inhibitory currents in BACE1 transgenic mice. Finally, we show that the neural hyperexcitability, Aβ load, and spatial memory deficit phenotypes of APP23 mice are significantly reduced upon the granule cell expression of a non-cleavable β3 subunit mutant. Collectively, our study establishes that BACE1-dependent cleavage of GABAAR β subunits promotes the pathological hyperexcitability known to drive neurodegeneration and cognitive impairment in the AD brain, suggesting that prevention of the cleavage could slow disease progression.
Collapse
Affiliation(s)
- Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
| | - Hong Bao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Zujun Wu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoxu Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Guangwei Xu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoming Liu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Zhikun Wan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Jiachen Liu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Junju He
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Yuying Jing
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Ruijie Zhu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Zhenyu Long
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Yating Rong
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Dongxu Wang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoqun Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wei Xiong
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Guangming Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Hampel H, Lista S, Vanmechelen E, Zetterberg H, Giorgi FS, Galgani A, Blennow K, Caraci F, Das B, Yan R, Vergallo A. β-Secretase1 biological markers for Alzheimer's disease: state-of-art of validation and qualification. Alzheimers Res Ther 2020; 12:130. [PMID: 33066807 PMCID: PMC7566058 DOI: 10.1186/s13195-020-00686-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/15/2020] [Indexed: 01/09/2023]
Abstract
β-Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-β pathway in Alzheimer's disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction.In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction.The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results.BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Filippo Sean Giorgi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| | - Brati Das
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Andrea Vergallo
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
| |
Collapse
|
4
|
Zhang Z, Li Y, He F, Cui Y, Zheng Y, Li R. Sex differences in circulating neuregulin1-β1 and β-secretase 1 expression in childhood-onset schizophrenia. Compr Psychiatry 2020; 100:152176. [PMID: 32430144 DOI: 10.1016/j.comppsych.2020.152176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Early-onset schizophrenia is a severe and rare form of schizophrenia that is clinically and neurobiologically continuous with the adult form of schizophrenia. Neuregulin1 (NRG1)-mediated signaling is crucial for early neurodevelopment, which exerts its function by limited β-secretase 1 (BACE1) proteolysis processing. However, circulating neuregulin1-β1 (NRG1-β1), an isoform of NRG1, and its cleavage enzyme BACE1 have not been studied in early-onset patients with schizophrenia. METHODS In this study, we collected plasma and clinical information from 71 young patients (7 ≤ age years ≤20) with schizophrenia and 53 age- and sex-matched healthy controls. Immunoassay was used to test levels of circulating NRG1-β1 and BACE1 expression. We further analyzed the relationship of disease-onset age and gender with NRG1-β1 and BACE1 levels. RESULTS We found that circulating plasma levels of NRG1-β1 were significantly decreased in young patients with early-onset schizophrenia. In males with childhood onset schizophrenia (COS), NRG1-β1 was reduced and was inversely correlated with positive symptom of PANSS; moreover, these male patients with higher plasma BACE1 levels showed more severe general symptoms of PANSS and defective social functioning; whereas, no aforementioned results were found in adolescent-onset schizophrenia (AOS). Notably, young female patients with COS and AOS had no significant change in NRG1-β1 and BACE1, which demonstrated a sex-dependent effect in early-onset schizophrenia. CONCLUSION Our results suggest that decreased levels of NRG1-β1 and its cleavage enzyme BACE1 contribute to increased risk of etiology of schizophrenia. Synthetic biomarkers may have clinical applications for the early diagnosis of male COS.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Fan He
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yonghua Cui
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yi Zheng
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Rena Li
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Asadzadeh Manjili F, Kalantar SM, Arsang-Jang S, Ghafouri-Fard S, Taheri M, Sayad A. Upregulation of vitamin D-related genes in schizophrenic patients. Neuropsychiatr Dis Treat 2018; 14:2583-2591. [PMID: 30349256 PMCID: PMC6186300 DOI: 10.2147/ndt.s176301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Low level of vitamin D is a potential risk factor for developing schizophrenia. Through interaction with its receptor (VDR) and the related enzymes (CYP27B1, CYP24A1), vitamin D modulates neurodevelopment, neuroprotection, and immunomodulation. Its deficiency leads to aberrant neurodevelopment in schizophrenic patients. METHODS In this case-control study, relative expression of VDR, CYP27B1, and CYP24A1 in schizophrenic patients was compared with healthy individuals. Total RNA was extracted from whole blood of 50 patients with schizophrenia and 50 healthy controls. Real-time PCR was used to determine relative gene expression levels of VDR, CYP27B1, and CYP24A1. RESULTS Significant upregulations were observed in VDR (P=0.004, 95% CI=0.77, 0.86), CYP27B1 (P=0.002, 95% CI=1.22, 4.98), and CYP24A1 (P≤0.0001, 95% CI=-2.721, 1.061) expressions in peripheral blood of schizophrenic patients compared with controls. Moreover, the gender-based analysis revealed upregulation of all genes in all the categories of male and female except for VDR gene in male group (P=0.234, 95% CI=-0.79, 3.35) and CYP27B1 gene in the female group (P=0.09, 95% CI=-0.21, 6.55). The age-based analysis demonstrated overexpression of VDR and CYP27B1 genes in all categories. Finally, there were significant correlations between expression levels of all genes (P<0.0001), while no correlation was found between age and expression of genes. CONCLUSION We hypothesized that the observed upregulation of the mentioned genes in schizophrenia patients might be the result of a compensatory mechanism to protect the affected individuals against adverse consequences of this disorder. Such imbalance in vitamin D processing pathway might also be implicated in the pathogenesis of schizophrenia. However, future studies should be designed to confirm the results of the current study.
Collapse
Affiliation(s)
| | - Seyed Mehdi Kalantar
- Reproductive and Genetic Unit, Recurrent Abortion Research Center, Yazd Reproductive Science Institute, Yazd University of Medical Sciences, Yazd, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ;
| | - Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ; .,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ;
| |
Collapse
|