1
|
Mo J, Zhang J, Meng X, Wang F, Tang W, Liu Y, Fu L, Liang F, Mo Z. Inhibition of microRNA-139-5p Improves Fibroblasts Viability and Enhances Wound Repair in Diabetic Rats Through AP-1 (c-Fos/c-Jun). Diabetes Metab Syndr Obes 2025; 18:237-248. [PMID: 39901919 PMCID: PMC11789773 DOI: 10.2147/dmso.s496556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
Introductions Diabetic foot ulcers (DFU) are notoriously difficult to heal, however, its underlying molecular mechanisms are unknown. MicroRNA-139-5p participates in various biological processes, including cancer and vascular endothelial injury, while its role in diabetic wound healing has not been reported. Methods Sprague-Dawley (SD) rats were intraperitoneally injected with streptozotocin and a 1.0 cm full-layer dorsal skin wound was made to establish a diabetic wound model. On days 1, 4, 7, and 10 after the wound was made, a solution containing microRNA-139-5p antagomir or control was injected along the dorsal edge of the wound. Wound healing was analyzed using Image J, histological analysis and molecular analysis. Skin tissues from 4 diabetic and 4 matched non-diabetic ulcer patients were obtained to detect microRNA-139-5p expression. In vitro, human skin fibroblasts were transfected with microRNA-139-5p inhibitors/mimics, the function of the fibroblasts was evaluated by CCK-8 assay and scratch assay, and AP-1 (c-Fos/c-Jun) was detected. Results Obviously elevated microRNA-139-5p expression was detected in the wound tissue of the rats with diabetes and patients with DFUs, and the microRNA-139-5p antagonist-treated diabetic wounds had faster healing rates. The pace of diabetic wound re-epithelialization and angiogenesis was accelerated, and the expression of AP-1 family members (c-Fos/c-Jun), and VEGF, PDGF was upregulated in the wound tissue of diabetic rats treated with topical microRNA-139-5p antagomir. In vitro, the expression of microRNA-139-5p was up-regulated in human skin fibroblasts induced by high glucose treatment, while the function of the cell proliferation and migration was promoted and the level of AP-1 (c-Fos/c-Jun) was increased after transfected with the microRNA-139-5p inhibitor, and vice versa. Our study further verified that microRNA-139-5p regulated the migration of human skin fibroblasts by modulating c-Fos. Conclusion Inhibiting microRNA-139-5p improves fibroblasts viability and promotes diabetic wound healing, suggesting that this may be a therapeutic strategy for diabetic foot ulcer.
Collapse
Affiliation(s)
- Jiake Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People’s Republic of China
- Diabetic Foot Research Center of Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Jiaqi Zhang
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People’s Republic of China
- Diabetic Foot Research Center of Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Xubiao Meng
- Department of Endocrinology, Haikou People’s Hospital & Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, People’s Republic of China
| | - Fang Wang
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People’s Republic of China
- Diabetic Foot Research Center of Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Weian Tang
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People’s Republic of China
- Diabetic Foot Research Center of Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Ying Liu
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People’s Republic of China
- Diabetic Foot Research Center of Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Lanfang Fu
- Department of Endocrinology, Haikou People’s Hospital & Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, People’s Republic of China
| | - Fang Liang
- Department of Endocrinology, Xingtai People’s Hospital, Xingtai, Hebei Province, People’s Republic of China
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People’s Republic of China
- Diabetic Foot Research Center of Central South University, Changsha, Hunan Province, People’s Republic of China
| |
Collapse
|
2
|
β-Elemene Improves Morphine Tolerance in Bone Cancer Pain via N-Methyl-D-Aspartate Receptor 2B Subunit-Mediated μ-Opioid Receptor. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9897669. [PMID: 36164617 PMCID: PMC9509249 DOI: 10.1155/2022/9897669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Background Improving morphine tolerance (MT) is an urgent problem in the clinical treatment of bone cancer pain. Considering that β-Elemene is widely used in the treatment of cancer pain, we explored the effects and mechanism of β-Elemene in preventing MT of bone cancer pain. Method Bone cancer pain and chronic MT rat model was established by injecting MADB106 cells and morphine (10 mg/kg). SH-SY5Y cells were treated with morphine (10 μg/mL) for 48 h to establish a cell model. The mechanical withdrawal threshold and thermal withdrawal latency of rats were detected by mechanical allodynia and thermal hyperalgesia tests, respectively. The protein expressions of μ-opioid receptor (MOPR), cyclic adenosine monophosphate (cAMP), N-methyl-D-aspartate receptor subunit 2B (NR2B), phosphorylated-calmodulin-dependent protein kinase II (p-CaMKII), and CaMKII were detected by western blot. The viability of SH-SY5Y cells was determined by the cell counting kit-8 assay. cAMP content in SH-SY5Y cells was measured by a LANCE cAMP kit. Result Animal experiments showed that MT strengthened over time, while increased β-Elemene dosage alleviated MT. The viability of SH-SY5Y cells was down-regulated by high-dose β-Elemene. In the rat and cell models, long-term morphine treatment decreased the expression of MOPR and increased the cAMP and NR2B expressions and p-CaMKII/CaMKII, while β-Elemene and siNR2B counteracted the effects of morphine treatment. In addition, siNR2B reversed the effects of β-Elemene on related protein expressions and cAMP content in the cell model. Conclusion β-Elemene improved MT in bone cancer pain through the regulation of NR2B-mediated MOPR.
Collapse
|
3
|
Zhu H, Xu X, Zheng E, Ni J, Jiang X, Yang M, Zhao G. LncRNA RP11‑805J14.5 functions as a ceRNA to regulate CCND2 by sponging miR‑34b‑3p and miR‑139‑5p in lung adenocarcinoma. Oncol Rep 2022; 48:161. [PMID: 35866595 PMCID: PMC9350987 DOI: 10.3892/or.2022.8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common lung cancer with high incidence. The prognosis of LUAD is poor due to its aggressive behavior. Long non‑coding RNAs (lncRNAs) have been reported as a key modulator on LUAD progression. Therefore, the present study aimed to clarify the molecular mechanism of lncRNAs in LUAD development. The expression of lncRNA RP11‑805J14.5 (RP11‑805J14.5) in LUAD tissues and cells was quantified based on the data in The Cancer Genome Atlas (TCGA). Cell viability was determined using Cell Counting Kit‑8 method. Apoptotic cells were sorted and determined by flow cytometry. Cell migration and invasion abilities were detected by the Transwell assay. Luciferase reporter experiment and RNA pull‑down assay were utilized to determine the interactions between RP11‑805J14.5, microRNA (miR)‑34b‑3p, miR‑139‑5p, and cyclin D2 (CCND2). A xenograft tumor was established to determine tumor growth in vivo. RP11‑805J14.5 was highly expressed in LUAD and associated with poor survival of LUAD patients. Knockdown of RP11‑805J14.5 suppressed LUAD cell growth, invasion, migration and tumor growth, indicating that RP11‑805J14.5 is an important regulator of LUAD. Our study demonstrated that the regulation of RP11‑805J14.5 on LUAD was mediated by CCND2 whose expression was regulated by sponging miR‑34b‑3p and miR‑139‑5p. The expression of RP11‑805J14.5 was increased in LUAD, and the knockdown of RP11‑805J14.5 expression suppressed LUAD cell growth, invasion and migration by downregulating CCND2 by sponging miR‑34b‑3p and miR‑139‑5p, indicating that RP11‑805J14.5 could be a prospective target for LUAD therapy.
Collapse
Affiliation(s)
- Huangkai Zhu
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiang Xu
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Enkuo Zheng
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Junjun Ni
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Xu Jiang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Minglei Yang
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guofang Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
4
|
Mansour A, Nagi K, Dallaire P, Lukasheva V, Le Gouill C, Bouvier M, Pineyro G. Comprehensive Signaling Profiles Reveal Unsuspected Functional Selectivity of δ-Opioid Receptor Agonists and Allow the Identification of Ligands with the Greatest Potential for Inducing Cyclase Superactivation. ACS Pharmacol Transl Sci 2021; 4:1483-1498. [PMID: 34661070 PMCID: PMC8506601 DOI: 10.1021/acsptsci.1c00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/29/2022]
Abstract
![]()
Prolonged exposure
to opioid receptor agonists triggers adaptations
in the adenylyl cyclase (AC) pathway that lead to enhanced production
of cyclic adenosine monophosphate (cAMP) upon withdrawal. This cellular
phenomenon contributes to withdrawal symptoms, hyperalgesia and analgesic
tolerance that interfere with clinical management of chronic pain
syndromes. Since δ-opioid receptors (DOPrs) are a promising
target for chronic pain management, we were interested in finding
out if cell-based signaling profiles as generated for drug discovery
purposes could inform us of the ligand potential to induce sensitization
of the cyclase path. For this purpose, signaling of DOPr agonists
was monitored at multiple effectors. The resulting signaling profiles
revealed marked functional selectivity, particularly for Met-enkephalin
(Met-ENK) whose signaling bias profile differed from those of synthetic
ligands like SNC-80 and ARM390. Signaling diversity among ligands
was systematized by clustering agonists according to similarities
in Emax and Log(τ) values for the
different responses. The classification process revealed that the
similarity in Gα/Gβγ, but not in β-arrestin
(βarr), responses was correlated with the potential of Met-ENK,
deltorphin II, (d-penicillamine2,5)-enkephalin (DPDPE), ARM390,
and SNC-80 to enhance cAMP production, all of which required Ca2+ mobilization to produce this response. Moreover, superactivation
by Met-ENK, which was the most-effective Ca2+ mobilizing
agonist, required Gαi/o activation, availability of Gβγ
subunits at the membrane, and activation of Ca2+ effectors
such as calmodulin and protein kinase C (PKC). In contrast, superactivation by (N-(l-tyrosyl)-(3S)-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)-l-phenylalanyl-l-phenylalanine (TIPP), which was set
in a distinct category through clustering, required activation of
Gαi/o subunits but was independent of the Gβγ dimer
and Ca2+ mobilization, relying instead on Src and Raf-1
to induce this cellular adaptation.
Collapse
Affiliation(s)
- Ahmed Mansour
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Karim Nagi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul Dallaire
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Viktoriya Lukasheva
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Graciela Pineyro
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| |
Collapse
|
5
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
Luo J, Chen Y, Xu Y, Tang M, Zhang X. Morphine contributed to the deterioration of cancer via miR-543/MARCKS/FcγR-mediated phagocytosis pathway. ACTA ACUST UNITED AC 2019; 71:1584-1598. [PMID: 31373006 DOI: 10.1111/jphp.13146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/29/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES It has been confirmed that morphine was detrimental to patients with cancers. Hence, we aimed to reveal a certain mechanism of morphine in cancer development. METHODS Microarray and GSEA analysis were utilized to seek for differently expressed genes and pathway. KEY FINDINGS Bioinformatics analysis identified that downregulation of MARCKS and upregulation of miR-543 in samples treated with morphine. FcγR-mediated phagocytosis pathway was illustrated to be upregulated in the control. PANC-1 and DU145 cell viability was increased but apoptosis was declined as morphine concentration went up from 10-8 to 10-6 mol/l. On the other curve, the viability was reduced and apoptosis was elevated from 10-6 to 10-5 mol/l. The expression of miR-543 ran the same trend as cell viability. Assays in vivo and in vitro validated that miR-543 facilitated cell viability, tumour growth, levels of CA199 and PSA, whereas inhibited apoptosis. MARCKS could target and inhibit miR-543 expression, which exhibited an opposite effect on cancer progression. MiR-543 blocked but MARCKS activated FcγR-mediated phagocytosis pathway. CONCLUSIONS Morphine at 10-6 mol/l could benefit miR-543 expression to inhibit MARCKS expression, consequently, blocking FcγR-mediated phagocytosis pathway, which contributed to the cancer progression in vitro and in vivo.
Collapse
Affiliation(s)
- Jianghui Luo
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiding Chen
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiquan Xu
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miaomiao Tang
- Nursing Department, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|