1
|
Colwell MJ, Tagomori H, Chapman S, Gillespie AL, Cowen PJ, Harmer CJ, Murphy SE. Pharmacological targeting of cognitive impairment in depression: recent developments and challenges in human clinical research. Transl Psychiatry 2022; 12:484. [PMID: 36396622 PMCID: PMC9671959 DOI: 10.1038/s41398-022-02249-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Impaired cognition is often overlooked in the clinical management of depression, despite its association with poor psychosocial functioning and reduced clinical engagement. There is an outstanding need for new treatments to address this unmet clinical need, highlighted by our consultations with individuals with lived experience of depression. Here we consider the evidence to support different pharmacological approaches for the treatment of impaired cognition in individuals with depression, including treatments that influence primary neurotransmission directly as well as novel targets such as neurosteroid modulation. We also consider potential methodological challenges in establishing a strong evidence base in this area, including the need to disentangle direct effects of treatment on cognition from more generalised symptomatic improvement and the identification of sensitive, reliable and objective measures of cognition.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Sarah Chapman
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Amy L Gillespie
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
2
|
Chronic corticosterone exposure impairs emotional regulation and cognitive function through disturbing neural oscillations in mice. Behav Brain Res 2022; 434:114030. [DOI: 10.1016/j.bbr.2022.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/17/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
|
3
|
Song L, Wu X, Wang J, Guan Y, Zhang Y, Gong M, Wang Y, Li B. Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2. Brain Res Bull 2021; 177:81-91. [PMID: 34500039 DOI: 10.1016/j.brainresbull.2021.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the antidepressant effect and mechanism of catalpol on corticosterone (CORT)-induced depressive-like behavior in mice for the first time. As a result, CORT injection induced depressive-like behaviors of mice in behavioral tests, aggravated the serum CORT, adrenocorticotropic hormone, and corticotropin-releasing hormone levels, and conspicuously elevated the phosphorylations of nuclear factor kappa-B (NF-κB) in the hippocampus and frontal cortex, and down-regulated the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2). Furthermore, CORT exposure dramatically augmented the levels of inflammatory factors (interleukin-1β, tumor necrosis factor-α, nitric oxide synthase, and nitric oxide) and lipid peroxidation product malondialdehyde, and attenuated the levels of antioxidants including reduced glutathione, glutathione S-transferase, total superoxide dismutase, and heme oxygenase-1 in the mouse hippocampus and frontal cortex. On the contrary, catalpol administration markedly suppressed the abnormalities of the above indicators. From the overall results, this study displayed that catalpol exerted a beneficial effect on CORT-induced depressive-like behavior in mice possibly via the inhibition of hypothalamus-pituitary-adrenal (HPA) axis hyperactivity, central inflammation and oxidative damage at least partially through dual regulation of NF-κB and Nrf2.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yuechen Guan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bingyin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
4
|
Chen WB, Wang YX, Wang HG, An D, Sun D, Li P, Zhang T, Lu WG, Liu YQ. TPEN attenuates amyloid-β 25-35-induced neuronal damage with changes in the electrophysiological properties of voltage-gated sodium and potassium channels. Mol Brain 2021; 14:124. [PMID: 34384467 PMCID: PMC8359616 DOI: 10.1186/s13041-021-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
To understand the role of intracellular zinc ion (Zn2+) dysregulation in mediating age-related neurodegenerative changes, particularly neurotoxicity resulting from the generation of excessive neurotoxic amyloid-β (Aβ) peptides, this study aimed to investigate whether N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a Zn2+-specific chelator, could attenuate Aβ25-35-induced neurotoxicity and the underlying electrophysiological mechanism. We used the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay to measure the viability of hippocampal neurons and performed single-cell confocal imaging to detect the concentration of Zn2+ in these neurons. Furthermore, we used the whole-cell patch-clamp technique to detect the evoked repetitive action potential (APs), the voltage-gated sodium and potassium (K+) channels of primary hippocampal neurons. The analysis showed that TPEN attenuated Aβ25-35-induced neuronal death, reversed the Aβ25-35-induced increase in intracellular Zn2+ concentration and the frequency of APs, inhibited the increase in the maximum current density of voltage-activated sodium channel currents induced by Aβ25-35, relieved the Aβ25-35-induced decrease in the peak amplitude of transient outward K+ currents (IA) and outward-delayed rectifier K+ currents (IDR) at different membrane potentials, and suppressed the steady-state activation and inactivation curves of IA shifted toward the hyperpolarization direction caused by Aβ25-35. These results suggest that Aβ25-35-induced neuronal damage correlated with Zn2+ dysregulation mediated the electrophysiological changes in the voltage-gated sodium and K+ channels. Moreover, Zn2+-specific chelator-TPEN attenuated Aβ25-35-induced neuronal damage by recovering the intracellular Zn2+ concentration.
Collapse
Affiliation(s)
- Wen-Bo Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yu-Xiang Wang
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Dan Sun
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Pan Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Department of Neurology, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, People's Republic of China
| | - Tao Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Wan-Ge Lu
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
5
|
Zou XH, Sun LH, Yang W, Li BJ, Cui RJ. Potential role of insulin on the pathogenesis of depression. Cell Prolif 2020; 53:e12806. [PMID: 32281722 PMCID: PMC7260070 DOI: 10.1111/cpr.12806] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The regulation of insulin on depression and depression-like behaviour has been widely reported. Insulin and activation of its receptor can promote learning and memory, affect the hypothalamic-pituitary-adrenal axis (HPA) balance, regulate the secretion of neurotrophic factors and neurotransmitters, interact with gastrointestinal microbiome, exert neuroprotective effects and have an impact on depression. However, the role of insulin on depression remains largely unclear. Therefore, in this review, we summarized the potential role of insulin on depression. It may provide new insight for clarifying role of insulin on the pathogenesis of depression.
Collapse
Affiliation(s)
- Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Bittar TP, Nair BB, Kim JS, Chandrasekera D, Sherrington A, Iremonger KJ. Corticosterone mediated functional and structural plasticity in corticotropin-releasing hormone neurons. Neuropharmacology 2019; 154:79-86. [PMID: 30771372 DOI: 10.1016/j.neuropharm.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
Corticosteroid stress hormones drive a multitude of adaptations in the brain. Hypothalamic corticotropin-releasing hormone (CRH) neurons control the circulating levels of corticosteroid stress hormones in the body and are themselves highly sensitive to corticosteroids. CRH neurons have been shown to undergo various adaptions in response to acute stress hormone elevations. However, their structural and physiological changes under chronically elevated corticosterone are less clear. To address this, we determined the structural and functional changes in CRH neurons in the paraventricular nucleus of the hypothalamus following 14 days of corticosterone treatment. We find that prolonged corticosterone elevation reduces CRH neuron intrinsic excitability as measured by summation of subthreshold postsynaptic depolarisations and spiking output. We find that under normal conditions, CRH neurons have a relatively compact and simple dendritic arbor, with a low density of somatic and dendritic spines. Interestingly, the axon originated from a proximal dendrite close to the soma in approximately half of the CRH neurons reconstructed. While prolonged elevation in corticosterone levels did not result in any changes to gross dendritic morphology, it induced a significant reduction in both somatic and dendritic spine density. Together these data reveal the morphological features of hypothalamic CRH neurons and highlight their capacity to undergo functional and morphological plasticity in response to chronic corticosterone elevations. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Thibault P Bittar
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Betina B Nair
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Joon S Kim
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Dhananjie Chandrasekera
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Aidan Sherrington
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Xiaoyao Kangai Jieyu Fang, a Chinese Herbal Formulation, Ameliorates Cancer-Related Depression Concurrent with Breast Cancer in Mice via Promoting Hippocampal Synaptic Plasticity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3967642. [PMID: 30581482 PMCID: PMC6276466 DOI: 10.1155/2018/3967642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
Diagnosis with breast cancer is a major life event that elicits increases in depressive symptoms for up to 50% of women. Xiaoyao Kangai Jieyu Fang (XYKAJY) is derived from a canonical TCM formula, Xiaoyao San (XYS), which has a history of nearly 1000 years for treating depression. The aim of this study was to investigate whether XYKAJY alleviates depression-like behavior and breast tumor proliferation in breast cancer mice then explore the mechanisms underlying its action on HPA axis and hippocampal plasticity further. XYKAJY was treated at the high dose of 1.95 g/mL and 0.488 g/mL, after 21 days of administration. Different behaviors, monoamine neurotransmitters, tumor markers, and the index of HPA axis were detected to evaluate depressive-like symptoms of breast cancer mice. Also, the pathological changes of the tumor, hippocampus, and the expressions of GR, NR2A, NR2B, CAMKII, CREB, and BDNF were detected. In this study, XYKAJY formulation significantly improved the autonomic behavior, reduced the incubation period of feeding, and reversed the typical depressive-like symptoms in breast cancer mice. Also, it reduced the content of CORT, ACTH, CRH, and CA125, CA153, CEA in the blood, protected the pathological changes of the hippocampus and tumor, upregulated the expression of GR, CREB, and BDNF in the hippocampus, and significantly decreased the expression of NR2A, NR2B, and CaMKII. These results provide direct evidence that XYKAJY effectively alleviates depression-like behaviors and tumor proliferation in vehicle mice with ameliorates hippocampus synaptic plasticity dysfunctions.
Collapse
|