1
|
Kim JS, Soto-Diaz K, Bingham TW, Steelman AJ, Das A. Role of omega-3 endocannabinoids in the modulation of T-cell activity in a multiple sclerosis experimental autoimmune encephalomyelitis (EAE) model. J Biol Chem 2023; 299:102886. [PMID: 36626985 PMCID: PMC9926309 DOI: 10.1016/j.jbc.2023.102886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Epidemiological studies show that omega-3 fatty acid consumption is associated with improved conditions in neurodegenerative diseases such as multiple sclerosis (MS). However, the mechanism of this association is not well understood. Emerging evidence suggests that parent molecules such as docosahexaenoic acid are converted into downstream metabolites that are capable of directly modulating immune responses. In vitro, we found that docosahexaenoyl ethanolamide (DHEA), another dietary component and its epoxide metabolite, reduced the polarization of naïve T-cells toward proinflammatory Th1 and Th17 phenotypes. Furthermore, we identified that DHEA and related endocannabinoids are changing during the disease progression in mice undergoing relapse-remitting experimental autoimmune encephalomyelitis (RR-EAE). In addition, daily administration of DHEA to mice delayed the onset of disease, the rate of relapse, and the severity of clinical scores at relapse in RR-EAE, an animal model of MS. Collectively, these data indicate that DHEA and their downstream metabolites reduce the disease severity in the RR-EAE model of MS and can be potential dietary adjuvants to existing MS therapeutics.
Collapse
Affiliation(s)
- Justin S. Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katiria Soto-Diaz
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tanner W. Bingham
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrew J. Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,For correspondence: Aditi Das; Andrew J. Steelman
| | - Aditi Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
2
|
Quantification of endocannabinoids in human cerebrospinal fluid using a novel micro-flow liquid chromatography-mass spectrometry method. Anal Chim Acta 2022; 1210:339888. [DOI: 10.1016/j.aca.2022.339888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
|
3
|
de Bus I, van Krimpen S, Hooiveld GJ, Boekschoten MV, Poland M, Witkamp RF, Albada B, Balvers MGJ. Immunomodulating effects of 13- and 16-hydroxylated docosahexaenoyl ethanolamide in LPS stimulated RAW264.7 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158908. [PMID: 33610761 DOI: 10.1016/j.bbalip.2021.158908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Docosahexaenoyl ethanolamide (DHEA), the ethanolamine conjugate of the n-3 long chain polyunsaturated fatty acid docosahexaenoic acid, is endogenously present in the human circulation and in tissues. Its immunomodulating properties have been (partly) attributed to an interaction with the cyclooxygenase-2 (COX-2) enzyme. Recently, we discovered that COX-2 converts DHEA into two oxygenated metabolites, 13- and 16-hydroxylated-DHEA (13- and 16-HDHEA, respectively). It remained unclear whether these oxygenated metabolites also display immunomodulating properties like their parent DHEA. In the current study we investigated the immunomodulating properties of 13- and 16-HDHEA in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The compounds reduced production of tumor necrosis factor alpha (TNFα), interleukin (IL)-1β and IL-1Ra, but did not affect nitric oxide (NO) and IL-6 release. Transcriptome analysis showed that the compounds inhibited the LPS-mediated induction of pro-inflammatory genes (InhbA, Ifit1) and suggested potential inhibition of regulators such as toll-like receptor 4 (TLR4), MyD88, and interferon regulatory factor 3 (IRF3), whereas anti-inflammatory genes (SerpinB2) and potential regulators IL-10, sirtuin 1 (Sirt-1), fluticasone propionate were induced. Additionally, transcriptome analysis of 13-HDHEA suggests a potential anti-angiogenic role. In contrast to the known oxylipin-lowering effects of DHEA, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses revealed that 13- and 16-HDHEA did not affect oxylipin formation. Overall, the anti-inflammatory effects of 13-HDHEA and 16-HDHEA are less pronounced compared to their parent molecule DHEA. Therefore, we propose that COX-2 metabolism of DHEA acts as a regulatory mechanism to limit the anti-inflammatory properties of DHEA.
Collapse
Affiliation(s)
- Ian de Bus
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Sandra van Krimpen
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Guido J Hooiveld
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Mark V Boekschoten
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Mieke Poland
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
4
|
Bazinet RP, Metherel AH, Chen CT, Shaikh SR, Nadjar A, Joffre C, Layé S. Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain Behav Immun 2020; 85:21-28. [PMID: 31278982 DOI: 10.1016/j.bbi.2019.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
The results of several meta-analyses suggest that eicosapentaenoic acid (EPA) supplementation is therapeutic in managing the symptoms of major depression. It was previously assumed that because EPA is extremely low in the brain it did not cross the blood-brain barrier and any therapeutic effects it exerted would be via the periphery. However, more recent studies have established that EPA does enter the brain, but is rapidly metabolised following entry. While EPA does not accumulate within the brain, it is present in microglia and homeostatic mechanisms may regulate its esterification to phospholipids that serve important roles in cell signaling. Furthermore, a variety of signaling molecules from EPA have been described in the periphery and they have the potential to exert effects within the brain. If EPA is confirmed to be therapeutic in major depression as a result of adequately powered randomized clinical trials, future research on brain EPA metabolism could lead to the discovery of novel targets for treating or preventing major depression.
Collapse
Affiliation(s)
- Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, North Bethesda, MD 20852, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Agnes Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|