1
|
Jaftha M, Robertson F, van Rensburg SJ, Kidd M, van Toorn R, Kemp MC, Johannes C, Moremi KE, Whati L, Kotze MJ, Engel-Hills P. White Matter Lesion Volumes on 3-T MRI in People With MS Who Had Followed a Diet and Lifestyle Program for More Than 10 Years. Mult Scler Int 2024; 2024:8818934. [PMID: 39524062 PMCID: PMC11548950 DOI: 10.1155/2024/8818934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Cerebral white matter lesion (WML) formation in people with multiple sclerosis (pwMS) is linked to the death of myelin-producing oligodendrocytes. Current MS treatment strategies focus on limiting WML accumulation and disability. Using a pathology-supported genetic testing (PSGT) program, we identified specific risk factors for MS, categorized as deficiencies and aggravators. We developed a novel clinical methodology to mitigate these risk factors, including personalized lifestyle interventions and optimization of cerebral nutrients to prevent oligodendrocyte demise and promote remyelination. Objective: To conduct a pilot case-control study over a 10-year period to ascertain whether the PSGT Program can reduce or prevent WML formation in pwMS. Methods: MRI was performed at baseline as well as after an interval period of at least 10 years or longer in 22 pwMS. WML volumes were determined using Sequence Adaptive Multimodal SEGmentation (SAMSEG) software, part of FreeSurfer 7.2. Other variables included age at MRI, disease duration, disability status, and medication. Results: PwMS (n = 13) who had followed the PSGT program for more than 10 years, had significantly smaller lesion volumes (mm3) compared to pwMS who did not adhere to the program (n = 9) (4950 ± 5303 vs. 17934 ± 11139; p = 0.002). WML volumes were significantly associated (p = 0.02) with disability (EDSS) but not with age (p = 0.350), disease duration (p = 0.709), or Interferon-β treatment (p = 0.70). Conclusion: Dietary and lifestyle changes may lower the risk of developing cerebral WMLs in pwMS and potentially slow disease progression. Larger studies are required to confirm the effectiveness of such interventions in pwMS.
Collapse
Affiliation(s)
- Mariaan Jaftha
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa
- Cape University Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frances Robertson
- Cape University Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Susan J. van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Merlisa C. Kemp
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa
- Medical Imaging, Department of Health and Care Professions, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Clint Johannes
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7500, Cape Town, South Africa
| | - Kelebogile E. Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, and National Health Laboratory Service (NHLS), Cape Town, South Africa
| | | | - Maritha J. Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, and National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
2
|
Tekin A, Rende B, Efendi H, Bunul SD, Çakır Ö, Çolak T, Balcı S. Volumetric and Asymmetric Index Analysis of Subcortical Structures in Multiple Sclerosis Patients: A Retrospective Study Using volBrain Software. Cureus 2024; 16:e55799. [PMID: 38590495 PMCID: PMC10999780 DOI: 10.7759/cureus.55799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic and autoimmune disease that has a significant influence on the central nervous system, such as the brain and spinal cord, affecting millions of individuals globally. Understanding the connection between subcortical brain regions and MS is crucial for effective diagnostic and therapeutic approaches for treating this disabling disease. This study explores the relationship between volume and contours of asymmetry index of subcortical brain regions in individuals with MS using volBrain software (https://www.volbrain.net; developed by José V. Manjón (Valencia Polytechnic University, Valencia, Spain) and Pierrick Coupé (University of Bordeaux, Bordeaux, France)). Methods In our retrospective investigation, we admitted 100 Turkish individuals, comprising 50 patients diagnosed with relapsing-remitting MS (RRMS) (24 (48%) males and 26 (52%) females) and 50 healthy controls (23 (46%) males and 27 (54%) females), registered between October 2017 and February 2022 for five years and underwent assessment in the radiology department at the Teaching and Research Hospital of Kocaeli University; 1,150 Turkish patients were excluded from our study based on our exclusion criteria. We used magnetic resonance imaging with a 3-Tesla (3T) scanner and volBrain software to assess volumes (cm3) and asymmetry indexes due to asymmetry for different levels of atrophy of total intracranial, total brain, gray matter, white matter, and subcortical regions, the most affected regions in MS patients for both patient and control cohorts. Results Statistical analysis revealed a significant difference between patient and control groups (p < 0.001), with patient group mean age at 38.32 years and control group mean age at 32.88 years. Patient group exhibited lower values for total intracranial, total brain, gray matter, white matter, and cerebrospinal fluid volume compared to control group (p < 0.05). The results indicated a statistically significant decrease (p < 0.05) in the values for total intracranial and total brain volume, whereas all other values remained unchanged. We compared volumes of subcortical structures on the right and left sides and found that the putamen, thalamus, and globus pallidus had statistically lower values in the patient group than in the control group (p < 0.001), apart from the lateral ventricle. Furthermore, our retrospective investigation demonstrated a statistically significant difference in the globus pallidus asymmetry index, indicating a preference for the patient group (p < 0.05). A lower asymmetry index value signifies a larger volume for the right side of the subcortical regions of the brain when compared to the left side. Conclusion Brain atrophy, although characterized by irreversible tissue damage, is targeted by therapeutic interventions to prevent progression. It is, therefore, imperative to develop a universally accepted measurement standard for subcortical structures that also considers the inherent variability present within each structure. Our findings serve as an important basis and indicator for the determination of subcortical atrophy and asymmetry in MS, the prognosis of the disease, and the etiology of clinical symptoms. Subsequent research may benefit by adopting the novel approach of considering brain atrophy as an outcome rather than a predictor, thereby facilitating the elucidation of the intricate biological mechanisms that give rise to volume loss.
Collapse
Affiliation(s)
- Ayla Tekin
- Anatomy, Kocaeli University, Kocaeli, TUR
| | - Buket Rende
- Anatomy, European Vocational School, Kocaeli Health and Technology University, Kocaeli, TUR
| | | | | | | | - Tuncay Çolak
- Anatomy, Faculty of Medicine, Kocaeli University, Kocaeli, TUR
| | - Sibel Balcı
- Biostatistics and Medical Informatics, Kocaeli University, Kocaeli, TUR
| |
Collapse
|
3
|
Dadashkhan S, Mirmotalebisohi SA, Poursheykhi H, Sameni M, Ghani S, Abbasi M, Kalantari S, Zali H. Deciphering crucial genes in multiple sclerosis pathogenesis and drug repurposing: A systems biology approach. J Proteomics 2023; 280:104890. [PMID: 36966969 DOI: 10.1016/j.jprot.2023.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/10/2023]
Abstract
This study employed systems biology and high-throughput technologies to analyze complex molecular components of MS pathophysiology, combining data from multiple omics sources to identify potential biomarkers and propose therapeutic targets and repurposed drugs for MS treatment. This study analyzed GEO microarray datasets and MS proteomics data using geWorkbench, CTD, and COREMINE to identify differentially expressed genes associated with MS disease. Protein-protein interaction networks were constructed using Cytoscape and its plugins, and functional enrichment analysis was performed to identify crucial molecules. A drug-gene interaction network was also created using DGIdb to propose medications. This study identified 592 differentially expressed genes (DEGs) associated with MS disease using GEO, proteomics, and text-mining datasets. 37 DEGs were found to be important by topographical network studies, and 6 were identified as the most significant for MS pathophysiology. Additionally, we proposed six drugs that target these key genes. Crucial molecules identified in this study were dysregulated in MS and likely play a key role in the disease mechanism, warranting further research. Additionally, we proposed repurposing certain FDA-approved drugs for MS treatment. Our in silico results were supported by previous experimental research on some of the target genes and drugs. SIGNIFICANCE: As the long-lasting investigations continue to discover new pathological territories in neurodegeneration, here we apply a systems biology approach to determine multiple sclerosis's molecular and pathophysiological origin and identify multiple sclerosis crucial genes that contribute to candidating new biomarkers and proposing new medications.
Collapse
Affiliation(s)
- Sadaf Dadashkhan
- Molecular Medicine Research Centre, Universitätsklinikum Jena, Jena, Germany; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Poursheykhi
- Department of New Scientist, Faculty of Medical Sciences, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sima Kalantari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Johannes C, Moremi KE, Kemp MC, Whati L, Engel-Hills P, Kidd M, van Toorn R, Jaftha M, van Rensburg SJ, Kotze MJ. Pathology-supported genetic testing presents opportunities for improved disability outcomes in multiple sclerosis. Per Med 2023; 20:107-130. [PMID: 37194915 DOI: 10.2217/pme-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Background: Lipid metabolism may impact disability in people with multiple sclerosis (pwMS). Methods: Fifty-one pwMS entered an ultrasound and MRI study, of whom 19 had followed a pathology-supported genetic testing program for more than 10 years (pwMS-ON). Genetic variation, blood biochemistry, vascular blood flow velocities, diet and exercise were investigated. Results: pwMS-ON had significantly lower (p < 0.01) disability (Expanded Disability Status Scale) than pwMS not on the program (1.91 ± 0.75 vs 3.87 ± 2.32). A genetic variant in the lipid transporter FABP2 gene (rs1799883; 2445G>A, A54T) was significantly associated (p < 0.01) with disability in pwMS not on the program, but not in pwMS-ON (p = 0.88). Vascular blood flow velocities were lower in the presence of the A-allele. Conclusion: Pathology-supported genetic testing may provide guidance for lifestyle interventions with a significant impact on improved disability in pwMS.
Collapse
Affiliation(s)
- Clint Johannes
- Department of Internal Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - Kelebogile E Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine & Health Sciences, Stellenbosch University, & National Health Laboratory Service (NHLS), Cape Town, 7500, South Africa
| | - Merlisa C Kemp
- Department of Medical Imaging & Therapeutic Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Bellville campus, Cape Town, 7530, South Africa
| | | | - Penelope Engel-Hills
- Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7530, South Africa
| | - Martin Kidd
- Department of Statistics & Actuarial Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Ronald van Toorn
- Department of Pediatrics & Child Health, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - Mariaan Jaftha
- Department of Medical Imaging & Therapeutic Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7530, South Africa
- Cape University Body Imaging Centre, Faculty of Human Biology, University of Cape Town, Cape Town, 7925 South Africa
| | - Susan J van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine & Health Sciences, Stellenbosch University, & National Health Laboratory Service (NHLS), Cape Town, 7500, South Africa
| |
Collapse
|
5
|
Kemp MC, Johannes C, van Rensburg SJ, Kidd M, Isaacs F, Kotze MJ, Engel-Hills P. Disability in multiple sclerosis is associated with vascular factors: An ultrasound study. J Med Imaging Radiat Sci 2022; 54:247-256. [PMID: 36528497 DOI: 10.1016/j.jmir.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although multiple sclerosis (MS) is an immune-related disorder, pharmaceutical interventions targeting the immune system do not stop or reverse disability progression; the major challenge for this condition. Studies show that disability progression in MS is associated with vascular comorbidity and brain volume loss, indicating that a multi-targeted approach is required to prevent debilitation. The aim of the present study was to examine the associations between vascular ultrasound, disability, biochemistry and lifestyle data in people with MS (pwMS). METHODS Extracranial vascular ultrasound was performed on 51 pwMS and 25 age-matched controls. Sonographic interrogation determined carotid intima-media thickness (cIMT) and abnormal blood flow patterns. Disability was assessed using the Expanded Disability Status Scale (EDSS). Biochemical and lifestyle data were obtained for all participants. RESULTS The EDSS had a highly significant positive association with the cIMT of the right (r = 0.63; p = 0.001) and left (r = 0.49; p = 0.001) common carotid arteries and negative associations with the peak systolic blood flow velocity of the right vertebral artery (r = -0.42; p = 0.01) as well as end-diastolic velocity of the left internal carotid artery (r = -0.47; p = 0.01). These associations were significantly influenced by biochemical and lifestyle factors. Both cIMT and age showed significant associations with the EDSS. When cIMT was adjusted for age in a regression analysis, the association between the EDSS and the cIMT remained significant (p < 0.01), while the age association was reduced to being significant only at 10% (p = 0.06). There was no association between the use of MS medication and the EDSS (p = 0.56). CONCLUSION PwMS who had increased cIMT, a surrogate marker for atherosclerosis, and reduced carotid artery blood flow velocities were at risk for greater disability over and above the effect of aging. These findings provide important information for disease management and disability prevention in pwMS. Modification of diet and lifestyle may promote the unhindered flow of essential nutritional factors into the brain in pwMS.
Collapse
|
6
|
Can Demirdöğen B, Kılıç OO, Karagülle EN, Kalmaz LM, Mungan S. Single nucleotide variants around the connective tissue growth factor (CTGF/CCN2) gene and their association with multiple sclerosis risk, disability scores, and rate of disease progression. Neurol Sci 2022; 43:3867-3877. [PMID: 35091888 DOI: 10.1007/s10072-021-05852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study aimed to explore the possible association of single nucleotide polymorphisms (SNPs) in the upstream (rs9402373) and downstream regions (rs9399005 and rs12526196) of the gene encoding connective tissue growth factor (CTGF/CCN2) with relapsing-remitting multiple sclerosis (RRMS) risk and clinical parameters including disability scores and rate of disability progression. MATERIALS AND METHODS In total, 200 patients with RRMS and 305 controls were genotyped using real-time PCR (rs1252696 C/T and rs9402373 G/C) or PCR-RFLP (rs9399005 C/T) methods. Furthermore, the association between these genotypes and clinical parameters including Expanded Disability Status Scale (EDSS) score, Multiple Sclerosis Severity Score (MSSS), age at onset, duration of disease, duration of treatment, and presence of contrast-enhancing lesions was analyzed. RESULTS rs9399005 genotypes TT and CT in the dominant model were significant predictors of RRMS vs. control status by logistic regression analysis (OR = 1.45, 95% CI = 1.01-2.08, P = .04). Moreover, these genotypes for rs9399005 were associated with a MSSS ≥ 2.4 (OR = 3.54, 95% CI = 1.56-8.05, P = .003). In addition, MSSS was lower in patients who had at least one rs12526196C allele than in the corresponding patients with the TT genotype (P = .02). CONCLUSION To our knowledge, this is the first evidence of the involvement of variants around the CTGF gene in MS risk and disability progression.
Collapse
Affiliation(s)
- Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey.
| | - Osman Oğuzhan Kılıç
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey
| | - Elif Naz Karagülle
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey
| | - Latife Mekselina Kalmaz
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey
| | - Semra Mungan
- Neurology Clinic, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
7
|
van Rensburg SJ, Hattingh C, Johannes C, Moremi KE, Peeters AV, van Heerden CJ, Erasmus RT, Zemlin AE, Kemp MC, Jaftha M, Khine AA, Potocnik FCV, Whati L, Engel-Hills P, van Toorn R, Kotze MJ. Pathology-supported genetic testing as a method for disability prevention in multiple sclerosis (MS). Part II. Insights from two MS cases. Metab Brain Dis 2021; 36:1169-1181. [PMID: 33710528 DOI: 10.1007/s11011-021-00712-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/01/2021] [Indexed: 11/26/2022]
Abstract
In Part I of this Review we evaluated the scientific evidence for a Metabolic Model of multiple sclerosis (MS). Part II outlines the implementation of an adaptive pathology-supported genetic testing (PSGT) algorithm aimed at preventing/reversing disability in two illustrative MS cases, starting with a questionnaire-based risk assessment, including family history and lifestyle factors. Measurement of iron, vitamin B12, vitamin D, cholesterol and homocysteine levels identified biochemical deficits in both cases. Case 1, after following the PSGT program for 15 years, had an expanded disability status scale (EDSS) of 2.0 (no neurological sequelae) together with preserved brain volume on magnetic resonance imaging (MRI). A novel form of iron deficiency was identified in Case 1, as biochemical testing at each hospital submission due to MS symptoms showed low serum iron, ferritin and transferrin saturation, while hematological status and erythrocyte sedimentation rate measurement of systemic inflammation remained normal. Case 2 was unable to walk unaided until her EDSS improved from 6.5 to 4.0 over 12 months after implementation of the PSGT program, with amelioration of her suboptimal biochemical markers and changes to her diet and lifestyle, allowing her to regain independence. Genotype-phenotype correlation using a pathway panel of functional single nucleotide variants (SNVs) to facilitate clinical interpretation of whole exome sequencing (WES), elucidated the underlying metabolic pathways related to the biochemical deficits. A cure for MS will remain an elusive goal if separated from nutritional support required for production and maintenance of myelin, which can only be achieved by a lifelong investment in wellness.
Collapse
Affiliation(s)
- Susan J van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Coenraad Hattingh
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Clint Johannes
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Kelebogile E Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Armand V Peeters
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carel J van Heerden
- Central Analytical Facility (CAF), DNA Sequencing Unit, Stellenbosch University, Stellenbosch, South Africa
| | - Rajiv T Erasmus
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annalise E Zemlin
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Merlisa C Kemp
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Mariaan Jaftha
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Aye Aye Khine
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Felix C V Potocnik
- Department of Psychiatry and Mental Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lindiwe Whati
- Genetic Care Centre, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| |
Collapse
|