1
|
Fu X, Li J, Yang S, Jing J, Zheng Q, Zhang T, Xu Z. Blood-brain barrier repair: potential and challenges of stem cells and exosomes in stroke treatment. Front Cell Neurosci 2025; 19:1536028. [PMID: 40260076 PMCID: PMC12009835 DOI: 10.3389/fncel.2025.1536028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
Stroke is characterized with high morbidity, mortality and disability all over the world, and one of its core pathologies is blood-brain barrier (BBB) dysfunction. BBB plays a crucial physiological role in protecting brain tissues and maintaining homeostasis in central nervous system (CNS). BBB dysfunction serves as a key factor in the development of cerebral edema, inflammation, and further neurological damage in stroke patients. Currently, stem cells and their derived exosomes have shown remarkable potential in repairing the damaged BBB and improving neurological function after stroke. Stem cells repair the integrity of BBB through anti-inflammatory, antioxidant, angiogenesis and regulation of intercellular signaling mechanisms, while stem cell-derived exosomes, as natural nanocarriers, further enhance the therapeutic effect by carrying active substances such as proteins, RNAs and miRNAs. This review will present the latest research advances in stem cells and their exosomes in stroke treatment, as well as the challenges of cell source, transplantation timing, dosage, and route of administration in clinical application, aiming to discuss their mechanisms of repairing BBB integrity and potential for clinical application, and proposes future research directions. Stem cells and exosomes are expected to provide new strategies for early diagnosis and precise treatment of stroke, and promote breakthroughs in the field of stroke.
Collapse
Affiliation(s)
- Xiaochen Fu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Jia Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Shoujun Yang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiapeng Jing
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Qinzhi Zheng
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Ting Zhang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Kim HY, Back DB, Choi BR, Choi DH, Kwon KJ. Rodent Models of Post-Stroke Dementia. Int J Mol Sci 2022; 23:ijms231810750. [PMID: 36142661 PMCID: PMC9501431 DOI: 10.3390/ijms231810750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Post-stroke cognitive impairment is one of the most common complications in stroke survivors. Concomitant vascular risk factors, including aging, diabetes mellitus, hypertension, dyslipidemia, or underlying pathologic conditions, such as chronic cerebral hypoperfusion, white matter hyperintensities, or Alzheimer’s disease pathology, can predispose patients to develop post-stroke dementia (PSD). Given the various clinical conditions associated with PSD, a single animal model for PSD is not possible. Animal models of PSD that consider these diverse clinical situations have not been well-studied. In this literature review, diverse rodent models that simulate the various clinical conditions of PSD have been evaluated. Heterogeneous rodent models of PSD are classified into the following categories: surgical technique, special structure, and comorbid condition. The characteristics of individual models and their clinical significance are discussed in detail. Diverse rodent models mimicking the specific pathomechanisms of PSD could provide effective animal platforms for future studies investigating the characteristics and pathophysiology of PSD.
Collapse
Affiliation(s)
- Hahn Young Kim
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-2030-7563; Fax: +82-2-2030-5169
| | - Dong Bin Back
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
| | - Bo-Ryoung Choi
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
| | - Dong-Hee Choi
- Department of Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Kyoung Ja Kwon
- Department of Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| |
Collapse
|