1
|
Xiao L, Wei Y, Yang H, Fan W, Jiang L, Ye Y, Qin Y, Wang X, Ma C, Liao L. Proteomic Characteristics of the Prefrontal Cortex and Hippocampus in Mice with Chronic Ketamine-Induced Anxiety and Cognitive Impairment. Neuroscience 2024; 541:23-34. [PMID: 38266908 DOI: 10.1016/j.neuroscience.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024]
Abstract
Schizophrenia, a complex psychiatric disorder with diverse symptoms, has been linked to ketamine, known for its N-methyl-D-aspartate (NMDA) receptor antagonistic properties. Understanding the distinct roles and mechanisms of ketamine is crucial, especially regarding its induction of schizophrenia-like symptoms. Recent research highlights the impact of ketamine on key brain regions associated with schizophrenia, specifically the prefrontal cortex (PFC) and hippocampus (Hip). This study focused on these regions to explore proteomic changes related to anxiety and cognitive impairment in a chronic ketamine-induced mouse model of schizophrenia. After twelve consecutive days of ketamine administration, brain tissues from these regions were dissected and analyzed. Using tandem mass tag (TMT) labeling quantitative proteomics techniques, 34,797 and 46,740 peptides were identified in PFC and Hip, corresponding to 5,668 and 6,463 proteins, respectively. In the PFC, a total of 113 proteins showed differential expression, primarily associated with the immuno-inflammatory process, calmodulin, postsynaptic density protein, and mitochondrial function. In the Hip, 129 differentially expressed proteins were screened, mainly related to synaptic plasticity proteins and mitochondrial respiratory chain complex-associated proteins. Additionally, we investigated key proteins within the glutamatergic synapse pathway and observed decreased expression levels of phosphorylated CaMKII and CREB. Overall, the study unveiled a significant proteomic signature in the chronic ketamine-induced schizophrenia mouse model, characterized by anxiety and cognitive impairment in both the PFC and Hip, and this comprehensive proteomic dataset may not only enhance our understanding of the molecular mechanisms underlying ketamine-related mental disorders but also offer valuable insights for future disease treatments.
Collapse
Affiliation(s)
- Li Xiao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ying Wei
- College of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hong Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Weihao Fan
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linzhi Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yongping Qin
- Clinical Pharmacology Laboratory, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China.
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Spohr L, de Aguiar MSS, Bona NP, Luduvico KP, Alves AG, Domingues WB, Blödorn EB, Bortolatto CF, Brüning CA, Campos VF, Stefanello FM, Spanevello RM. Blueberry Extract Modulates Brain Enzymes Activities and Reduces Neuroinflammation: Promising Effect on Lipopolysaccharide-Induced Depressive-Like Behavior. Neurochem Res 2023; 48:846-861. [PMID: 36357747 DOI: 10.1007/s11064-022-03813-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Major depressive disorder (MDD) is one of the most common neuropsychiatric disorders with high rates of prevalence and mortality. MDD is pathophysiologically complex, and treatment options are limited. Blueberries are rich in polyphenols and have neuroprotective potential. The aim of this study was to investigate the effects of blueberry extract on neuroinflammatory and neuroplasticity parameters, as well as Na+/K+-ATPase, monoamine oxidase-A (MAO-A), and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus of mice subject to lipopolysaccharide (LPS)-induced depressive-like behavior. We also analyzed the interaction between anthocyanins and indoleamine 2 3-dioxygenase (IDO). Male Swiss mice (60-day-old) received vehicle, fluoxetine (20 mg/kg), or blueberry extract (100 or 200 mg/kg) intragastrically for 7 days before intraperitoneal LPS (0.83 mg/kg) injection. Twenty-four hours after LPS administration, the mice were subjected to behavioral tests. Both fluoxetine and blueberry extract (200 mg/kg) decreased the immobility time in the forced swim test, without affecting locomotor activity. Fluoxetine attenuated the decrease of Na+/K+-ATPase in the cerebral cortex, while blueberry extract promoted this same effect in the hippocampus. Additionally, fluoxetine and blueberry extract attenuated the decrease in the activity of MAO-A in the hippocampus. Blueberry extract (200 mg/kg) also prevented LPS-induced increase in AChE activity in the hippocampus as well as LPS upregulation of relative mRNA expression of tumor necrosis factor alpha, interleukin (IL)-1β, and IL-10 in the cerebral cortex. Molecular docking analysis revealed binding sites for malvidin 3-galactoside (- 7.8 kcal/mol) and malvidin 3-glucoside (- 7.9 kcal/mol) residues with IDO. Taken together, these results indicate that blueberry extract improved depression-like behavior and attenuated the neurochemical and molecular changes in the brains of mice challenged with LPS.
Collapse
Affiliation(s)
- Luiza Spohr
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| | - Mayara Sandrielly Soares de Aguiar
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil
| | - Natália Pontes Bona
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amália Gonçalves Alves
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William Borges Domingues
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo Bierhals Blödorn
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - César Augusto Brüning
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| |
Collapse
|
3
|
Ni RJ, Gao TH, Wang YY, Tian Y, Wei JX, Zhao LS, Ni PY, Ma XH, Li T. Chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-AKT signaling pathway. Zool Res 2022; 43:989-1004. [PMID: 36257830 PMCID: PMC9700503 DOI: 10.24272/j.issn.2095-8137.2022.278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 09/03/2023] Open
Abstract
Ketamine, a rapid-acting antidepressant drug, has been used to treat major depressive disorder and bipolar disorder (BD). Recent studies have shown that ketamine may increase the potential risk of treatment-induced mania in patients. Ketamine has also been applied to establish animal models of mania. At present, however, the underlying mechanism is still unclear. In the current study, we found that chronic lithium exposure attenuated ketamine-induced mania-like behavior and c-Fos expression in the medial prefrontal cortex (mPFC) of adult male mice. Transcriptome sequencing was performed to determine the effect of lithium administration on the transcriptome of the PFC in ketamine-treated mice, showing inactivation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Pharmacological inhibition of AKT signaling by MK2206 (40 mg/kg), a selective AKT inhibitor, reversed ketamine-induced mania. Furthermore, selective knockdown of AKT via AAV-AKT-shRNA-EGFP in the mPFC also reversed ketamine-induced mania-like behavior. Importantly, pharmacological activation of AKT signaling by SC79 (40 mg/kg), an AKT activator, contributed to mania in low-dose ketamine-treated mice. Inhibition of PI3K signaling by LY294002 (25 mg/kg), a specific PI3K inhibitor, reversed the mania-like behavior in ketamine-treated mice. However, pharmacological inhibition of mammalian target of rapamycin (mTOR) signaling with rapamycin (10 mg/kg), a specific mTOR inhibitor, had no effect on ketamine-induced mania-like behavior. These results suggest that chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-AKT signaling pathway, which may be a novel target for the development of BD treatment.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tian-Hao Gao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Yan Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin-Xue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lian-Sheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Pei-Yan Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao-Hong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310014, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510799, China. E-mail:
| |
Collapse
|
4
|
Meyer DJ, Díaz-García CM, Nathwani N, Rahman M, Yellen G. The Na +/K + pump dominates control of glycolysis in hippocampal dentate granule cells. eLife 2022; 11:e81645. [PMID: 36222651 PMCID: PMC9592084 DOI: 10.7554/elife.81645] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular ATP that is consumed to perform energetically expensive tasks must be replenished by new ATP through the activation of metabolism. Neuronal stimulation, an energetically demanding process, transiently activates aerobic glycolysis, but the precise mechanism underlying this glycolysis activation has not been determined. We previously showed that neuronal glycolysis is correlated with Ca2+ influx, but is not activated by feedforward Ca2+ signaling (Díaz-García et al., 2021a). Since ATP-powered Na+ and Ca2+ pumping activities are increased following stimulation to restore ion gradients and are estimated to consume most neuronal ATP, we aimed to determine if they are coupled to neuronal glycolysis activation. By using two-photon imaging of fluorescent biosensors and dyes in dentate granule cell somas of acute mouse hippocampal slices, we observed that production of cytoplasmic NADH, a byproduct of glycolysis, is strongly coupled to changes in intracellular Na+, while intracellular Ca2+ could only increase NADH production if both forward Na+/Ca2+ exchange and Na+/K+ pump activity were intact. Additionally, antidromic stimulation-induced intracellular [Na+] increases were reduced >50% by blocking Ca2+ entry. These results indicate that neuronal glycolysis activation is predominantly a response to an increase in activity of the Na+/K+ pump, which is strongly potentiated by Na+ influx through the Na+/Ca2+ exchanger during extrusion of Ca2+ following stimulation.
Collapse
Affiliation(s)
- Dylan J Meyer
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | | | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mahia Rahman
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|