1
|
Nguyen W, Gyawali N, Stewart R, Tang B, Cox AL, Yan K, Larcher T, Bishop CR, Wood N, Devine GJ, Suhrbier A, Rawle DJ. Characterisation of a Japanese Encephalitis virus genotype 4 isolate from the 2022 Australian outbreak. NPJ VIRUSES 2024; 2:15. [PMID: 40295675 PMCID: PMC11721158 DOI: 10.1038/s44298-024-00025-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 04/30/2025]
Abstract
Human infections with the Japanese encephalitis virus (JEV) are a leading cause of viral encephalitis. An unprecedented outbreak of JEV genotype 4 was recently reported in Australia, with an isolate (JEVNSW/22) obtained from a stillborn piglet brain. Herein we conduct a thorough characterization of JEVNSW/22 in three different mouse strains and in human cortical brain organoids (hBOs), and determined the ability of JEVNSW/22 to be neutralized by sera from humans vaccinated with IMOJEV. JEVNSW/22 was less virulent than JEVFU (genotype 2) and JEVNakayama (genotype 3) in C57BL/6J mice and in interferon regulatory factor 7 deficient (Irf7-/-) mice, with infection of wild-type and knockout murine embryonic fibroblasts indicating JEVNSW/22 is more sensitive to type I interferon responses. Irf7-/- mice provide a new model for JEVNSW/22, showing higher viremia levels compared to C57BL/6J mice, and allowing for lethal neuroinvasive infection. All JEV strains were universally lethal in Ifnar-/- mice by day 3, with histological signs of brain hemorrhage, but no other lesions. There were no indications of brain infection in Ifnar-/- mice, with viral protein detected in blood vessels, but not neurons. All JEV isolates showed robust cytopathic infection of human cortical brain organoids, albeit lower for JEVNSW/22. IMOJEV vaccination in humans induced antibodies capable of neutralizing JEVNSW/22, although, for all JEV strains, cross-neutralization titers declined with increasing divergence from IMOJEV in the envelope amino acid sequences. Overall, our study establishes JEVNSW/22 mouse and hBO models of infection, allowing for possible lethal neuroinvasive infection in mice that was rarer than for other JEV genotypes. JEV vaccination regimens may afford protection against this newly emerged JEV genotype 4 strain, although neutralizing antibody responses are sub-optimal.
Collapse
Affiliation(s)
- Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Narayan Gyawali
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Romal Stewart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | | | - Cameron R Bishop
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
2
|
Siva Venkatesh IP, Majumdar A, Basu A. Prophylactic Administration of Gut Microbiome Metabolites Abrogated Microglial Activation and Subsequent Neuroinflammation in an Experimental Model of Japanese Encephalitis. ACS Chem Neurosci 2024; 15:1712-1727. [PMID: 38581382 DOI: 10.1021/acschemneuro.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.
Collapse
MESH Headings
- Gastrointestinal Microbiome/physiology
- Neuroinflammatory Diseases/drug therapy
- Neuroinflammatory Diseases/immunology
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/microbiology
- Microglia/drug effects
- Microglia/immunology
- Encephalitis, Japanese/drug therapy
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/microbiology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Fatty Acids, Volatile/pharmacology
- Fatty Acids, Volatile/therapeutic use
- Encephalitis Viruses, Japanese/drug effects
- Encephalitis Viruses, Japanese/immunology
- Encephalitis Viruses, Japanese/pathogenicity
- Survival Analysis
- Chemokines/immunology
- Chemokines/metabolism
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/metabolism
- Cytokine Release Syndrome/prevention & control
- Humans
- Female
- Animals
- Mice
- Apoptosis/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/virology
- Viral Load/drug effects
- Time Factors
Collapse
Affiliation(s)
| | - Atreye Majumdar
- National Brain Research Centre, Manesar, Haryana 122052, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India
| |
Collapse
|
3
|
Yang L, Xiong J, Liu Y, Liu Y, Wang X, Si Y, Zhu B, Chen H, Cao S, Ye J. Single-cell RNA sequencing reveals the immune features and viral tropism in the central nervous system of mice infected with Japanese encephalitis virus. J Neuroinflammation 2024; 21:76. [PMID: 38532383 DOI: 10.1186/s12974-024-03071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a neurotropic pathogen that causes lethal encephalitis. The high susceptibility and massive proliferation of JEV in neurons lead to extensive neuronal damage and inflammation within the central nervous system. Despite extensive research on JEV pathogenesis, the effect of JEV on the cellular composition and viral tropism towards distinct neuronal subtypes in the brain is still not well comprehended. To address these issues, we performed single-cell RNA sequencing (scRNA-seq) on cells isolated from the JEV-highly infected regions of mouse brain. We obtained 88,000 single cells and identified 34 clusters representing 10 major cell types. The scRNA-seq results revealed an increasing amount of activated microglia cells and infiltrating immune cells, including monocytes & macrophages, T cells, and natural killer cells, which were associated with the severity of symptoms. Additionally, we observed enhanced communication between individual cells and significant ligand-receptor pairs related to tight junctions, chemokines and antigen-presenting molecules upon JEV infection, suggesting an upregulation of endothelial permeability, inflammation and antiviral response. Moreover, we identified that Baiap2-positive neurons were highly susceptible to JEV. Our findings provide valuable clues for understanding the mechanism of JEV induced neuro-damage and inflammation as well as developing therapies for Japanese encephalitis.
Collapse
Affiliation(s)
- Ling'en Yang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junyao Xiong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yixin Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yinguang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xugang Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Youhui Si
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bibo Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shengbo Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Mohapatra S, Chakraborty T, Basu A. Japanese Encephalitis virus infection in astrocytes modulate microglial function: Correlation with inflammation and oxidative stress. Cytokine 2023; 170:156328. [PMID: 37567102 DOI: 10.1016/j.cyto.2023.156328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Japanese Encephalitis Virus (JEV) is a neurotropic virus which has the propensity to infect neuronal and glial cells of the brain. Astrocyte-microglia crosstalk leading to the secretion of various factors plays a major role in controlling encephalitis in brain. This study focused on understanding the role of astrocytic mediators that further shaped the microglial response towards JEV infection. METHODS After establishing JEV infection in C8D1A (mouse astrocyte cell line) and primary astrocyte enriched cultures (PAEC), astrocyte supernatant was used for preparation of conditioned media. Astrocyte supernatant was treated with UV to inactivate JEV and the supernatant was added to N9 culture media in ratio 1:1 for preparation of conditioned media. N9 microglial cells post treatment with astrocyte conditioned media and JEV infection were checked for expression of various inflammatory genes by qRT-PCR, levels of secreted cytokines in N9 cell supernatant were checked by cytometric bead array. N9 cell lysates were checked for expression of proteins - pNF-κβ, IBA-1, NS3 and RIG-I by western blotting. Viral titers were measured in N9 supernatant by plaque assays. Immunocytochemistry experiments were done to quantify the number of infected microglial cells after astrocyte conditioned medium treatment. Expression of different antioxidant enzymes was checked in N9 cells by western blotting, levels of reactive oxygen species (ROS) was detected by fluorimetry using DCFDA dye. RESULTS N9 microglial cells post treatment with JEV-infected astrocyte conditioned media and JEV infection were activated, showed an upsurge in expression of inflammatory genes and cytokines both at the transcript and protein levels. These N9 cells showed a decrease in quantity of viral titers and associated viral proteins in comparison to control cells (not treated with conditioned media but infected with JEV). Also, N9 cells upon conditioned media treatment and JEV infection were more prone to undergo oxidative stress as observed by the decreased expression of antioxidant enzymes SOD-1, TRX-1 and increased secretion of reactive oxygen species (ROS). CONCLUSION Astrocytic mediators like TNF-α, MCP-1 and IL-6 influence microglial response towards JEV infection by promoting inflammation and oxidative stress in them. As a result of increased microglial inflammation and secretion of ROS, viral replication is lessened in conditioned media treated and JEV infected microglial cells as compared to control cells with no conditioned media treatment but only JEV infection.
Collapse
Affiliation(s)
- Stuti Mohapatra
- National Brain Research Centre, Manesar, Haryana 122052, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India.
| |
Collapse
|