1
|
Nautiyal H, Jaiswar A, Jha PK, Dwivedi S. Exploring key genes and pathways associated with sex differences in autism spectrum disorder: integrated bioinformatic analysis. Mamm Genome 2024; 35:280-295. [PMID: 38594551 DOI: 10.1007/s00335-024-10036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder marked by functional abnormalities in brain that causes social and linguistic difficulties. The incidence of ASD is more prevalent in males compared to females, but the underlying mechanism, as well as molecular indications for identifying sex-specific differences in ASD symptoms remain unknown. Thus, impacting the development of personalized strategy towards pharmacotherapy of ASD. The current study employs an integrated bioinformatic approach to investigate the genes and pathways uniquely associated with sex specific differences in autistic individuals. Based on microarray dataset (GSE6575) extracted from the gene expression omnibus, the dysregulated genes between the autistic and the neurotypical individuals for both sexes were identified. Gene set enrichment analysis was performed to ascertain biological activities linked to the dysregulated genes. Protein-protein interaction network analysis was carried out to identify hub genes. The identified hub genes were examined to determine their functions and involvement in the associated pathways using Enrichr. Additionally, hub genes were validated from autism-associated databases and the potential small molecules targeting the hub genes were identified. The present study utilized whole blood transcriptomic gene expression analysis data and identified 2211 and 958 differentially expressed unique genes in males and females respectively. The functional enrichment analysis revealed that male hub genes were functionally associated with RNA polymerase II mediated transcriptional regulation whereas female hub genes were involved in intracellular signal transduction and cell migration. The top male hub genes exhibited functional enrichment in tyrosine kinase signalling pathway. The pathway enrichment analysis of male hub genes indicates the enrichment of papillomavirus infection. Female hub genes were enriched in androgen receptor signalling pathway and functionally enriched in focal adhesion specific excision repair. Identified drug like candidates targeting these genes may serve as a potential sex specific therapeutics. Wortmannin for males, 5-Fluorouracil for females had the highest scores. Targeted and sex-specific pharmacotherapies may be created for the management of ASD. The current investigation identifies sex-specific molecular signatures derived from whole blood which may serve as a potential peripheral sex-specific biomarkers for ASD. The study also uncovers the possible pharmacological interventions against the selected genes/pathway, providing support in development of therapeutic strategies to mitigate ASD. However, experimental proofs on biological systems are warranted.
Collapse
Affiliation(s)
- Himani Nautiyal
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India
| | - Akanksha Jaiswar
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shubham Dwivedi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India.
| |
Collapse
|
2
|
Sener EF, Dana H, Tahtasakal R, Hamurcu Z, Taheri S, Delibasi N, Mehmetbeyoglu E, Sukranli ZY, Dal F, Tufan E, Oflamaz AO, Doganyigit Z, Ozkul Y, Rassoulzadegan M. Heterozygous Cc2d1a mice show sex-dependent changes in the Beclin-1/p62 ratio with impaired prefrontal cortex and hippocampal autophagy. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110764. [PMID: 37059290 DOI: 10.1016/j.pnpbp.2023.110764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders characterized by repetitive behaviors, lack of social interaction and communication. CC2D1A is identified in patients as an autism risk gene. Recently, we suggested that heterozygous Cc2d1a mice exhibit impaired autophagy in the hippocampus. We now report the analysis of autophagy markers (Lc3, Beclin and p62) in different regions hippocampus, prefrontal cortex, hypothalamus and cerebellum, with an overall decrease in autophagy and changes in Beclin-1/p62 ratio in the hippocampus. We observed sex-dependent variations in transcripts and protein expression levels. Moreover, our analyses suggest that alterations in autophagy initiated in Cc2d1a heterozygous parents are variably transmitted to offspring, even when the offspring's genotype is wild type. Aberration in the autophagy mechanism may indirectly contribute to induce synapse alteration in the ASD brain.
Collapse
Affiliation(s)
- Elif Funda Sener
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| | - Halime Dana
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Reyhan Tahtasakal
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Zuhal Hamurcu
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Serpil Taheri
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey
| | - Nesrin Delibasi
- Cappodoccia University, Cappadocia Vocational School Medical Laboratory Techniques Programme, Nevsehir, Turkey; Cardiff University, School of Medicine Department of Hematology, Division of Cancer and Genetics, Cardiff, UK.
| | - Ecmel Mehmetbeyoglu
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| | - Zeynep Yilmaz Sukranli
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Fatma Dal
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Esra Tufan
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Asli Okan Oflamaz
- Bozok University, Medical Faculty Department of Histology and Embryology, 66100 Yozgat, Turkey
| | - Zuleyha Doganyigit
- Bozok University, Medical Faculty Department of Histology and Embryology, 66100 Yozgat, Turkey
| | - Yusuf Ozkul
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Genetics, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| | - Minoo Rassoulzadegan
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Université Cote d'Azur (UCA), INSERM-CNRS, IRCAN, 06107 Nice, France; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| |
Collapse
|