1
|
Suchodolski J, Parol M, Cal-Smok M, Piecuch A, Ogórek R. First report of increased amphotericin B resistance in Coniochaeta polymorpha isolates from Rangifer tarandus platyrhynchus droppings in Spitsbergen. Fungal Biol 2025; 129:101567. [PMID: 40222767 DOI: 10.1016/j.funbio.2025.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/04/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
The study examines Coniochaeta polymorpha strains isolated from reindeer droppings in Spitsbergen, focusing on their growth characteristics, antifungal resistance profiles, and enzymatic activities. Notably, all strains exhibited high resistance to fluconazole (MIC, 256 μg/mL), suggesting an inherent trait. Amphotericin B sensitivity varied, with some strains showing high MIC values, indicating emerging resistance. This occurrence is notable in polar ecosystems, which are minimally impacted by human activity. Moreover, enzymatic assays revealed significant proteolytic and esterase activities, as well as partial α-hemolysis, suggesting enhanced virulence potential in C. polymorpha. Phylogenetic analysis confirmed genetic diversity among six isolated strains, highlighting distinct clades within the species. These findings contribute to understanding C. polymorpha pathogenic potential and ecological versatility.
Collapse
Affiliation(s)
- Jakub Suchodolski
- Department of Mycology and Genetics, University of Wrocław, 51-148, Wrocław, Poland.
| | - Mateusz Parol
- Department of Mycology and Genetics, University of Wrocław, 51-148, Wrocław, Poland
| | - Magdalena Cal-Smok
- Department of Mycology and Genetics, University of Wrocław, 51-148, Wrocław, Poland
| | - Agata Piecuch
- Department of Mycology and Genetics, University of Wrocław, 51-148, Wrocław, Poland
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wrocław, 51-148, Wrocław, Poland
| |
Collapse
|
2
|
Gao H, Ye S, Liu Y, Fan X, Yin C, Liu Y, Liu J, Qiao Y, Chen X, Yao F, Shi D. Transcriptome analysis provides insight into gamma irradiation delaying quality deterioration of postharvest Lentinula edodes during cold storage. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100172. [PMID: 37213208 PMCID: PMC10199187 DOI: 10.1016/j.fochms.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
To better determine how gamma irradiation (GI) improves abiotic stress resistance, a transcriptome analysis of postharvest L. edodes in response to 1.0 kGy GI was conducted, and further the underlying mechanism of GI in delaying quality deterioration over 20 d of cold storage was explored. The results suggested that GI was involved in multiple metabolic processes in irradiated postharvest L. edodes. In comparison with the control group, the GI group contained 430 differentially expressed genes, including 151 upregulated genes and 279 downregulated genes, which unveiled characteristic expression profiles and pathways. The genes involved in the pentose phosphate pathway were mainly upregulated and the expression level of the gene encoding deoxy-D-gluconate 3-dehydrogenase was 9.151-fold higher. In contrast, the genes related to other energy metabolism pathways were downregulated. Concurrently, GI inhibited the expression of genes associated with delta 9-fatty acid desaturase, ribosomes, and HSP20; thus, GI helped postpone the degradation of lipid components, suppress transcriptional metabolism and regulate the stress response. Additionally, the metabolic behavior of DNA repair induced by GI intensified by noticeable upregulation. These regulatory effects could play a potential and nonnegligible role in delaying the deterioration of L. edodes quality. The results provide new information on the regulatory mechanism of postharvest L. edodes when subjected to 1.0 kGy GI during cold storage.
Collapse
Affiliation(s)
- Hong Gao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shuang Ye
- School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Yani Liu
- School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Xiuzhi Fan
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chaomin Yin
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyu Liu
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yu Qiao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xueling Chen
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fen Yao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Defang Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
3
|
Yang P, Wu W, Chen J, Jiang S, Zheng Z, Deng Y, Lu J, Wang H, Zhou Y, Geng Y, Wang K. Thermotolerance improvement of engineered Saccharomyces cerevisiae ERG5 Delta ERG4 Delta ERG3 Delta, molecular mechanism, and its application in corn ethanol production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:66. [PMID: 37046321 PMCID: PMC10091661 DOI: 10.1186/s13068-023-02312-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND The thermotolerant yeast is beneficial in terms of efficiency improvement of processes and reduction of costs, while Saccharomyces cerevisiae does not efficiently grow and ferment at high-temperature conditions. The sterol composition alteration from ergosterol to fecosterol in the cell membrane of S. cerevisiae affects the thermotolerant capability. RESULTS In this study, S. cerevisiae ERG5, ERG4, and ERG3 were knocked out using the CRISPR-Cas9 approach to impact the gene expression involved in ergosterol synthesis. The highest thermotolerant strain was S. cerevisiae ERG5ΔERG4ΔERG3Δ, which produced 22.1 g/L ethanol at 37 °C using the initial glucose concentration of 50 g/L with an increase by 9.4% compared with the wild type (20.2 g/L). The ethanol concentration of 9.4 g/L was produced at 42 ℃, which was 2.85-fold of the wild-type strain (3.3 g/L). The molecular mechanism of engineered S. cerevisiae at the RNA level was analyzed using the transcriptomics method. The simultaneous deletion of S. cerevisiae ERG5, ERG4, and ERG3 caused 278 up-regulated genes and 1892 down-regulated genes in comparison with the wild-type strain. KEGG pathway analysis indicated that the up-regulated genes relevant to ergosterol metabolism were ERG1, ERG11, and ERG5, while the down-regulated genes were ERG9 and ERG26. S. cerevisiae ERG5ΔERG4ΔERG3Δ produced 41.6 g/L of ethanol at 37 °C with 107.7 g/L of corn liquefied glucose as carbon source. CONCLUSION Simultaneous deletion of ERG5, ERG4, and ERG3 resulted in the thermotolerance improvement of S. cerevisiae ERG5ΔERG4ΔERG3Δ with cell viability improvement by 1.19-fold at 42 °C via modification of steroid metabolic pathway. S. cerevisiae ERG5ΔERG4ΔERG3Δ could effectively produce ethanol at 37 °C using corn liquefied glucose as carbon source. Therefore, S. cerevisiae ERG5ΔERG4ΔERG3Δ had potential in ethanol production at a large scale under supra-optimal temperature.
Collapse
Affiliation(s)
- Peizhou Yang
- School of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei, 230601, Anhui, China.
| | - Wenjing Wu
- School of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei, 230601, Anhui, China
| | - Jianchao Chen
- School of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei, 230601, Anhui, China
| | - Suwei Jiang
- Department of Biological, Food and Environment Engineering, Hefei University, 158 Jinxiu Avenue, Hefei, 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei, 230601, Anhui, China
| | - Yanhong Deng
- Suzhou Cofco Biochemical Co., Ltd., Suzhou, 234001, China
| | - Jiuling Lu
- Suzhou Cofco Biochemical Co., Ltd., Suzhou, 234001, China
| | - Hu Wang
- Suzhou Cofco Biochemical Co., Ltd., Suzhou, 234001, China
| | - Yong Zhou
- Suzhou Cofco Biochemical Co., Ltd., Suzhou, 234001, China
| | - Yuyou Geng
- Suzhou Cofco Biochemical Co., Ltd., Suzhou, 234001, China
| | - Kanglin Wang
- Hefei Knature Bio-Pharm Co., Ltd., Hefei, 231131, China
| |
Collapse
|
4
|
Ianutsevich EA, Danilova OA, Antropova AB, Tereshina VM. Acquired thermotolerance, membrane lipids and osmolytes profiles of xerohalophilic fungus Aspergillus penicillioides under heat shock. Fungal Biol 2023; 127:909-917. [PMID: 36906381 DOI: 10.1016/j.funbio.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/23/2023]
Abstract
Xerophilic fungi accumulate a large amount of glycerol in the cytosol to counterbalance the external osmotic pressure. But during heat shock (HS) majority of fungi accumulate a thermoprotective osmolyte trehalose. Since glycerol and trehalose are synthesized in the cell from the same precursor (glucose), we hypothesised that, under heat shock conditions, xerophiles growing in media with high concentrations of glycerol may acquire greater thermotolerance than those grown in media with high concentrations of NaCl. Therefore, the composition of membrane lipids and osmolytes of the fungus Aspergillus penicillioides, growing in 2 different media under HS conditions was studied and the acquired thermotolerance was assessed. It was found that in the salt-containing medium an increase in the proportion of phosphatidic acids against a decrease in the proportion of phosphatidylethanolamines is observed in the composition of membrane lipids, and the level of glycerol in the cytosol decreases 6-fold, while in the medium with glycerol, changes in the composition of membrane lipids are insignificant and the level of glycerol is reduced by no more than 30%. In the mycelium trehalose level have increased in both media, but did not exceed 1% of dry weight. However, after exposure to HS the fungus acquires greater thermotolerance in the medium with glycerol than in the medium with salt. The data obtained indicate the interrelation between changes in the composition of osmolytes and membrane lipids in the adaptive response to HS, as well as the synergistic effect of glycerol and trehalose.
Collapse
Affiliation(s)
- Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| | - Olga A Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| | - Anna B Antropova
- Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», 5А, Malyy Kazennyy Pereulok, 105064, Moscow, Russian Federation.
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| |
Collapse
|
5
|
Guo Y, Gao Q, Fan Y, Song S, Yan D, Zhao J, Chen Y, Liu Y, Wang S. Two Strains of Lentinula edodes Differ in Their Transcriptional and Metabolic Patterns and Respond Differently to Thermostress. J Fungi (Basel) 2023; 9:jof9020179. [PMID: 36836294 PMCID: PMC9961724 DOI: 10.3390/jof9020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Temperature type is one of the key traits determining the cultivation regime of Lentinula edodes. However, the molecular and metabolic basis underling temperature type remain unclear. Here, we investigated the phenotypic, transcriptomic, and metabolic features of L. edodes with different temperature types under both control (25 °C) and high (37 °C) temperature conditions. We found that under the control condition, the high- and low-temperature types of L. edodes harbored distinct transcriptional and metabolic profiles. The high-temperature (H-)-type strain had a higher expression level of genes involved in the toxin processes and carbohydrate binding, while the low-temperature (L-)-type strain had a high expression level of oxidoreductase activity. Heat stress significantly inhibited the growth of both H- and L-type strains, while the latter had a higher growth inhibition rate. Upon exposure to heat, the H-type strain significantly up-regulated genes associated with the components of the cellular membrane, whereas the L-type strain markedly up-regulated genes involved in the extracellular region and carbohydrate binding. Metabolome data showed that thermostress altered purine and pyrimidine metabolism in the H-type strain, whereas it altered cysteine, methionine, and glycerophospholipid metabolism in the L-type strain. Transcriptome and metabolome integrative analysis was able to identify three independent thermotolerance-related gene-metabolite regulatory networks. Our results deepen the current understanding of the molecular and metabolic basis underlying temperature type and suggest, for the first time, that thermotolerance mechanisms can be temperature-type-dependent for L. edodes.
Collapse
Affiliation(s)
- Yuan Guo
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qi Gao
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yangyang Fan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shuang Song
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dong Yan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yulin Chen
- College of Agriculture and Food Engineering, Baise University, Baise 533000, China
| | - Yu Liu
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (Y.L.); (S.W.)
| | - Shouxian Wang
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (Y.L.); (S.W.)
| |
Collapse
|
6
|
Maj W, Pertile G, Frąc M. Soil-Borne Neosartorya spp.: A Heat-Resistant Fungal Threat to Horticulture and Food Production-An Important Component of the Root-Associated Microbial Community. Int J Mol Sci 2023; 24:1543. [PMID: 36675060 PMCID: PMC9867472 DOI: 10.3390/ijms24021543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Soil-borne Neosartorya spp. are the highly resilient sexual reproductive stage (teleomorph) of Aspergillus spp. Fungi of this genus are relevant components of root-associated microbial community, but they can also excrete mycotoxins and exhibit great resistance to high temperatures. Their ascospores easily transfer between soil and crops; thus, Neosartorya poses a danger to horticulture and food production, especially to the postharvest quality of fruits and vegetables. The spores are known to cause spoilage, mainly in raw fruit produce, juices, and pulps, despite undergoing pasteurization. However, these fungi can also participate in carbon transformation and sequestration, as well as plant protection in drought conditions. Many species have been identified and included in the genus, and yet some of them create taxonomical controversy due to their high similarity. This also contributes to Neosartorya spp. being easily mistaken for its anamorph, resulting in uncertain data within many studies. The review discusses also the factors shaping Neosartorya spp.'s resistance to temperature, preservatives, chemicals, and natural plant extracts, as well as presenting novel solutions to problems created by its resilient nature.
Collapse
Affiliation(s)
| | | | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
7
|
Duan WY, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Cai JP, Hu YS. Inhibitory effect of (E)-2-heptenal on Aspergillus flavus growth revealed by metabolomics and biochemical analyses. Appl Microbiol Biotechnol 2023. [PMID: 36477927 DOI: 10.1016/10.1007/s00253-022-12320-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The prevention of fungal proliferation in postharvest grains is critical for maintaining grain quality and reducing mycotoxin contamination. Fumigation with natural gaseous fungicides is a promising and sustainable approach to protect grains from fungal spoilage. In this study, the antifungal activities of (E)-2-alkenals (C5-C10) on Aspergillus flavus were tested in the vapor phase, and (E)-2-heptenal showed the highest antifungal activity against A. flavus. (E)-2-Heptenal completely inhibited A. flavus growth at 0.0125 µL/mL and 0.2 µL/mL in the vapor phase and liquid contact, respectively. (E)-2-Heptenal can disrupt the plasma membrane integrity of A. flavus via leakage of intracellular electrolytes. Scanning electron microscopy indicated that the mycelial morphology of A. flavus was remarkably affected by (E)-2-heptenal. Metabolomic analyses indicated that 49 metabolites were significantly differentially expressed in A. flavus mycelia exposed to 0.2 µL/mL (E)-2-heptenal; these metabolites were mainly involved in galactose metabolism, starch and sucrose metabolism, the phosphotransferase system, and ATP-binding cassette transporters. ATP production was reduced in (E)-2-heptenal-treated A. flavus, and Janus Green B staining showed reduced cytochrome c oxidase activity. (E)-2-Heptenal treatment induced oxidative stress in A. flavus mycelia with an accumulation of superoxide anions and hydrogen peroxide and increased activities of superoxide dismutase and catalase. Simulated storage experiments showed that fumigation with 400 µL/L of (E)-2-heptenal vapor could completely inhibit A. flavus growth in wheat grains with 20% moisture; this demonstrates its potential use in preventing grain spoilage. This study provides valuable insights into understanding the antifungal effects of (E)-2-heptenal on A. flavus. KEY POINTS : • (E)-2-Heptenal vapor showed the highest antifungal activity against A. flavus among (C5-C10) (E)-2-alkenals. • The antifungal effects of (E)-2-heptenal against A. flavus were determined. • The antifungal actions of (E)-2-heptenal on A. flavus were revealed by metabolomics and biochemical analyses.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
8
|
Inhibitory effect of (E)-2-heptenal on Aspergillus flavus growth revealed by metabolomics and biochemical analyses. Appl Microbiol Biotechnol 2022; 107:341-354. [DOI: 10.1007/s00253-022-12320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
|
9
|
Fox S, Sikes BA, Brown SP, Cripps CL, Glassman SI, Hughes K, Semenova-Nelsen T, Jumpponen A. Fire as a driver of fungal diversity - A synthesis of current knowledge. Mycologia 2022; 114:215-241. [PMID: 35344467 DOI: 10.1080/00275514.2021.2024422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fires occur in most terrestrial ecosystems where they drive changes in the traits, composition, and diversity of fungal communities. Fires range from rare, stand-replacing wildfires to frequent, prescribed fires used to mimic natural fire regimes. Fire regime factors, including burn severity, fire intensity, and timing, vary widely and likely determine how fungi respond to fires. Despite the importance of fungi to post-fire plant communities and ecosystem functioning, attempts to identify common fungal responses and their major drivers are lacking. This synthesis addresses this knowledge gap and ranges from fire adaptations of specific fungi to succession and assembly fungal communities as they respond to spatially heterogenous burning within the landscape. Fires impact fungi directly and indirectly through their effects on fungal survival, substrate and habitat modifications, changes in environmental conditions, and/or physiological responses of the hosts with which fungi interact. Some specific pyrophilous, or "fire-loving," fungi often appear after fire. Our synthesis explores whether such taxa can be considered cosmopolitan, and whether they are truly fire-adapted or simply opportunists adapted to rapidly occupy substrates and habitats made available by fires. We also discuss the possible inoculum sources of post-fire fungi and explore existing conceptual models and ecological frameworks that may be useful in generalizing fungal fire responses. We conclude with identifying research gaps and areas that may best transform the current knowledge and understanding of fungal responses to fire.
Collapse
Affiliation(s)
- Sam Fox
- Division of Biology, Kansas State University, Manhattan, Kansas 66506.,Department of Natural Resources and Society, University of Idaho, Moscow, Idaho 83844
| | - Benjamin A Sikes
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - Shawn P Brown
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152
| | - Cathy L Cripps
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717
| | - Sydney I Glassman
- Department of Microbiology & Plant Pathology, University of California at Riverside, Riverside, California 92521
| | - Karen Hughes
- Department of Ecology and Evolutionary Biology, University of Tennessee at Knoxville, Knoxville, Tennessee 37996
| | - Tatiana Semenova-Nelsen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
10
|
Thermotolerance and Adaptation to Climate Change. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Al-Saari N, Azmi NSA, Samsulrizal NH. Trichoderma Genes for Abiotic Stress Tolerance in Plants. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Li C, Liu Q, Wang Y, Yang X, Chen S, Zhao Y, Wu Y, Li L. Salt stress improves thermotolerance and high-temperature bioethanol production of multi-stress-tolerant Pichia kudriavzevii by stimulating intracellular metabolism and inhibiting oxidative damage. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:222. [PMID: 34823567 PMCID: PMC8613974 DOI: 10.1186/s13068-021-02071-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND High-temperature bioethanol production benefits from yeast thermotolerance. Salt stress could induce obvious cross-protection against heat stress of Pichia kudriavzevii, contributing to the improvement of its thermotolerance and bioethanol fermentation. However, the underlying mechanisms of the cross-protection remain poorly understood. RESULTS Salt stress showed obvious cross-protection for thermotolerance and high-temperature ethanol production of P. kudriavzevii observed by biomass, cell morphology and bioethanol production capacity. The biomass and ethanol production of P. kudriavzevii at 45 °C were, respectively, improved by 2.6 and 3.9 times by 300 mmol/L NaCl. Metabolic network map showed that salt stress obviously improved the key enzymes and intermediates in carbohydrate metabolism, contributing to the synthesis of bioethanol, ATP, amino acids, nucleotides, and unsaturated fatty acids, as well as subsequent intracellular metabolisms. The increasing trehalose, glycerol, HSPs, and ergosterol helped maintain the normal function of cell components. Heat stress induced serious oxidative stress that the ROS-positive cell rate and dead cell rate, respectively, rose from 0.5% and 2.4% to 28.2% and 69.2%, with the incubation temperature increasing from 30 to 45 °C. The heat-induced ROS outburst, oxidative damage, and cell death were obviously inhibited by salt stress, especially the dead cell rate which fell to only 20.3% at 300 mmol/L NaCl. The inhibiting oxidative damage mainly resulted from the abundant synthesis of GSH and GST, which, respectively, increased by 4.8 and 76.1 times after addition of 300 mmol/L NaCl. The improved bioethanol production was not only due to the improved thermotolerance, but resulted from the up-regulated alcohol dehydrogenases and down-regulated aldehyde dehydrogenases by salt stress. CONCLUSION The results provide a first insight into the mechanisms of the improved thermotolerance and high-temperature bioethanol production of P. kudriavzevii by salt stress, and provide important information to construct genetic engineering yeasts for high-temperature bioethanol production.
Collapse
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qiuying Liu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| |
Collapse
|
13
|
Poosapati S, Ravulapalli PD, Viswanathaswamy DK, Kannan M. Proteomics of Two Thermotolerant Isolates of Trichoderma under High-Temperature Stress. J Fungi (Basel) 2021; 7:1002. [PMID: 34946985 PMCID: PMC8704589 DOI: 10.3390/jof7121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Several species of the soil borne fungus of the genus Trichoderma are known to be versatile, opportunistic plant symbionts and are the most successful biocontrol agents used in today's agriculture. To be successful in field conditions, the fungus must endure varying climatic conditions. Studies have indicated that a high atmospheric temperature coupled with low humidity is a major factor in the inconsistent performance of Trichoderma under field conditions. Understanding the molecular modulations associated with Trichoderma that persist and deliver under abiotic stress conditions will aid in exploiting the value of these organisms for such uses. In this study, a comparative proteomic analysis, using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption/time-of-flight (MALDI-TOF-TOF) mass spectrometry, was used to identify proteins associated with thermotolerance in two thermotolerant isolates of Trichoderma: T. longibrachiatum 673, TaDOR673 and T. asperellum 7316, TaDOR7316; with 32 differentially expressed proteins being identified. Sequence homology and conserved domains were used to identify these proteins and to assign a probable function to them. The thermotolerant isolate, TaDOR673, seemed to employ the stress signaling MAPK pathways and heat shock response pathways to combat the stress condition, whereas the moderately tolerant isolate, TaDOR7316, seemed to adapt to high-temperature conditions by reducing the accumulation of misfolded proteins through an unfolded protein response pathway and autophagy. In addition, there were unique, as well as common, proteins that were differentially expressed in the two isolates studied.
Collapse
Affiliation(s)
- Sowmya Poosapati
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Prasad Durga Ravulapalli
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
| | | | - Monica Kannan
- Proteomics Facility, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India;
| |
Collapse
|
14
|
Adenylyl Cyclase and Protein Kinase A Play Redundant and Distinct Roles in Growth, Differentiation, Antifungal Drug Resistance, and Pathogenicity of Candida auris. mBio 2021; 12:e0272921. [PMID: 34663094 PMCID: PMC8524339 DOI: 10.1128/mbio.02729-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Candida auris is a globally emerging multidrug-resistant fungal pathogen. Its pathogenicity-related signaling networks are largely unknown. Here, we characterized the pathobiological functions of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway in C. auris. We focused on adenylyl cyclase (CYR1), the PKA regulatory subunit (BCY1), and the PKA catalytic subunits (TPK1 and TPK2). We concluded that PKA acts both dependently and independently of Cyr1 in C. auris. Tpk1 and Tpk2 have major and minor roles, respectively, in PKA activity and functions. Both Cyr1 and PKA promote growth, thermotolerance, filamentous growth, and resistance to stress and antifungal drugs by regulating expression of multiple effector genes. In addition, Cyr1 and PKA subunits were involved in disinfectant resistance of C. auris. However, deletion of both TPK1 and TPK2 generally resulted in more severe defects than CYR1 deletion, indicating that Cyr1 and PKA play redundant and distinct roles. Notably, Tpk1 and Tpk2 have redundant but Cyr1-independent roles in haploid-to-diploid cell transition, which increases virulence of C. auris. However, Tpk1 and Tpk2 often play opposing roles in formation of biofilms and the cell wall components chitin and chitosan. Surprisingly, deletion of CYR1 or TPK1/TPK2, which resulted in severe in vitro growth defects at 37°C, did not attenuate virulence, and BCY1 deletion reduced virulence of C. auris in a systemic murine infection model. In conclusion, this study provides comprehensive insights into the role of the cAMP/PKA pathway in drug resistance and pathogenicity of C. auris and suggests a potential therapeutic option for treatment of C. auris-mediated candidemia.
Collapse
|
15
|
Wu MX, Zou Y, Yu YH, Chen BX, Zheng QW, Ye ZW, Wei T, Ye SQ, Guo LQ, Lin JF. Comparative transcriptome and proteome provide new insights into the regulatory mechanisms of the postharvest deterioration of Pleurotus tuoliensis fruitbodies during storage. Food Res Int 2021; 147:110540. [PMID: 34399517 DOI: 10.1016/j.foodres.2021.110540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The Pleurotus tuoliensis (Pt), a precious edible mushroom with high economic value, is widely popular for its rich nutrition and meaty texture. However, rapid postharvest deterioration depreciates the commercial value of Pt and severely restricts its marketing. By RNA-Seq transcriptomic and TMT-MS MS proteomic, we study the regulatory mechanisms of the postharvest storage of Pt fruitbodies at 25 ℃ for 0, 38, and 76 h (these three-time points recorded as groups A, B, and C, respectively). 2,008 DEGs (Differentially expressed genes) were identified, and all DEGs shared 265 factors with all DEPs (Differentially expressed proteins). Jointly, the DEGs and DEPs of two-omics showed that the category of the metabolic process contained the most DEGs and DEPs in the biological process by GO (Gene Ontology) classification. The top 17 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways with the highest sum of DEG and DEP numbers in groups B/A (38 h vs. 0 h) and C/A (76 h vs. 0 h) and pathways closely related to energy metabolism were selected for analysis and discussion. Actively expression of CAZymes (Carbohydrate active enzymes), represented by laccase, chitinase, and β-glucanase, directly leads to the softening of fruitbodies. The transcription factor Rlm1 of 1,3-β-glucan synthase attracted attention with a significant down-regulation of gene levels in the C/A group. Laccase also contributes, together with phenylalanine ammonia-lyase (PAL), to the discoloration reaction in the first 76 h of the fruitbodies. Significant expression of several crucial enzymes for EMP (Glycolysis), Fatty acid degradation, and Valine, leucine and isoleucine degradation at the gene or protein level supply substantial amounts of acetyl-CoA to the TCA cycle. Citrate synthase (CS), isocitrate dehydrogenase (ICDH), and three mitochondrial respiratory complexes intensify respiration and produce high levels of ROS (Reactive oxygen species) by significant up-regulation. In the ROS scavenging system, only Mn-SOD was significantly up-regulated at the gene level and was probably interacted with Hsp60 (Heat shock protein 60), which was significantly up-regulated at the protein level, to play a dominant role in antioxidation. Three types of stresses - cell wall stress, starvation, and oxidative stress - were suffered by Pt fruitbodies postharvest, resulting in cell cycle arrest and gene expression disorder.
Collapse
Affiliation(s)
- Mu-Xiu Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Yuan Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Ying-Hao Yu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Bai-Xiong Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Qian-Wang Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Zhi-Wei Ye
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Tao Wei
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Si-Qiang Ye
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China.
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
16
|
Krah F, Hess J, Hennicke F, Kar R, Bässler C. Transcriptional response of mushrooms to artificial sun exposure. Ecol Evol 2021; 11:10538-10546. [PMID: 34367595 PMCID: PMC8328440 DOI: 10.1002/ece3.7862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Climate change causes increased tree mortality leading to canopy loss and thus sun-exposed forest floors. Sun exposure creates extreme temperatures and radiation, with potentially more drastic effects on forest organisms than the current increase in mean temperature. Such conditions might potentially negatively affect the maturation of mushrooms of forest fungi. A failure of reaching maturation would mean no sexual spore release and, thus, entail a loss of genetic diversity. However, we currently have a limited understanding of the quality and quantity of mushroom-specific molecular responses caused by sun exposure. Thus, to understand the short-term responses toward enhanced sun exposure, we exposed mushrooms of the wood-inhabiting forest species Lentinula edodes, while still attached to their mycelium and substrate, to artificial solar light (ca. 30°C and 100,000 lux) for 5, 30, and 60 min. We found significant differentially expressed genes at 30 and 60 min. Eukaryotic Orthologous Groups (KOG) class enrichment pointed to defense mechanisms. The 20 most significant differentially expressed genes showed the expression of heat-shock proteins, an important family of proteins under heat stress. Although preliminary, our results suggest mushroom-specific molecular responses to tolerate enhanced sun exposure as expected under climate change. Whether mushroom-specific molecular responses are able to maintain fungal fitness under opening forest canopies remains to be tested.
Collapse
Affiliation(s)
- Franz‐Sebastian Krah
- Conservation BiologyInstitute for Ecology, Evolution and DiversityFaculty of Biological SciencesGoethe University FrankfurtFrankfurt am MainGermany
| | - Jaqueline Hess
- Department of Soil EcologyUFZ Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
| | - Florian Hennicke
- Conservation BiologyInstitute for Ecology, Evolution and DiversityFaculty of Biological SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Project Group Genetics and Genomics of FungiChair Evolution of Plants and FungiRuhr‐University Bochum (RUB)BochumGermany
| | - Ritwika Kar
- Centre for Plant Molecular Biology, Developmental GeneticsUniversity of TübingenTübingenGermany
| | - Claus Bässler
- Conservation BiologyInstitute for Ecology, Evolution and DiversityFaculty of Biological SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Bavarian Forest National ParkGrafenauGermany
| |
Collapse
|
17
|
Parreira VDSC, Santos LGC, Rodrigues ML, Passetti F. ExVe: The knowledge base of orthologous proteins identified in fungal extracellular vesicles. Comput Struct Biotechnol J 2021; 19:2286-2296. [PMID: 33995920 PMCID: PMC8102145 DOI: 10.1016/j.csbj.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are double-membrane particles associated with intercellular communication. Since the discovery of EV production in the fungus Cryptococcus neoformans, the importance of EV release in its physiology and pathogenicity has been investigated. To date, few studies have investigated the proteomic content of EVs from multiple fungal species. Our main objective was to use an orthology approach to compare proteins identified by EV shotgun proteomics in 8 pathogenic and 1 nonpathogenic species. Using protein information from the UniProt and FungiDB databases, we integrated data for 11,433 hits in fungal EVs with an orthology perspective, resulting in 3,834 different orthologous groups. OG6_100083 (Hsp70 Pfam domain) was the unique orthologous group that was identified for all fungal species. Proteins with this protein domain are associated with the stress response, survival and morphological changes in different fungal species. Although no pathogenic orthologous group was found, we identified 5 orthologous groups exclusive to S. cerevisiae. Using the criteria of at least 7 pathogenic fungi to define a cluster, we detected the 4 unique pathogenic orthologous groups. Taken together, our data suggest that Hsp70-related proteins might play a key role in fungal EVs, regardless of the pathogenic status. Using an orthology approach, we identified at least 4 protein domains that could be novel therapeutic targets against pathogenic fungi. Our results were compiled in the herein described ExVe database, which is publicly available at http://exve.icc.fiocruz.br.
Collapse
Affiliation(s)
| | | | - Marcio L Rodrigues
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil.,Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil
| |
Collapse
|
18
|
Abu Bakar N, Karsani SA, Alias SA. Fungal survival under temperature stress: a proteomic perspective. PeerJ 2020; 8:e10423. [PMID: 33362961 PMCID: PMC7747687 DOI: 10.7717/peerj.10423] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increases in knowledge of climate change generally, and its impact on agricultural industries specifically, have led to a greater research effort aimed at improving understanding of the role of fungi in various fields. Fungi play a key role in soil ecosystems as the primary agent of decomposition, recycling of organic nutrients. Fungi also include important pathogens of plants, insects, bacteria, domestic animals and humans, thus highlighting their importance in many contexts. Temperature directly affects fungal growth and protein dynamics, which ultimately will cascade through to affect crop performance. To study changes in the global protein complement of fungi, proteomic approaches have been used to examine links between temperature stress and fungal proteomic profiles. SURVEY METHODOLOGY AND OBJECTIVES A traditional rather than a systematic review approach was taken to focus on fungal responses to temperature stress elucidated using proteomic approaches. The effects of temperature stress on fungal metabolic pathways and, in particular, heat shock proteins (HSPs) are discussed. The objective of this review is to provide an overview of the effects of temperature stress on fungal proteomes. CONCLUDING REMARKS Elucidating fungal proteomic response under temperature stress is useful in the context of increasing understanding of fungal sensitivity and resilience to the challenges posed by contemporary climate change processes. Although useful, a more thorough work is needed such as combining data from multiple -omics platforms in order to develop deeper understanding of the factor influencing and controlling cell physiology. This information can be beneficial to identify potential biomarkers for monitoring environmental changes in soil, including the agricultural ecosystems vital to human society and economy.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Survivability Assessment of Saccharomyces boulardii in a Symbiotic System Using Nutraceuticals and Modified Atmosphere Packaging. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02430-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Pinto CA, Moreira SA, Fidalgo LG, Inácio RS, Barba FJ, Saraiva JA. Effects of high-pressure processing on fungi spores: Factors affecting spore germination and inactivation and impact on ultrastructure. Compr Rev Food Sci Food Saf 2020; 19:553-573. [PMID: 33325178 DOI: 10.1111/1541-4337.12534] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Food contamination with heat-resistant fungi (HRF), and their spores, is a major issue among fruit processors, being frequently found in fruit juices and concentrates, among other products, leading to considerable economic losses and food safety issues. Several strategies were developed to minimize the contamination with HRF, with improvements from harvesting to the final product, including sanitizers and new processing techniques. Considering consumers' demands for minimally processed, fresh-like food products, nonthermal food-processing technologies, such as high-pressure processing (HPP), among others, are emerging as alternatives to the conventional thermal processing techniques. As no heat is applied to foods, vitamins, proteins, aromas, and taste are better kept when compared to thermal processes. Nevertheless, HPP is only able to destroy pathogenic and spoilage vegetative microorganisms to levels of pertinence for food safety, while bacterial spores remain. Regarding HRF spores (both ascospores and conidiospores), these seem to be more pressure-sensible than bacterial spores, despite a few cases, such as the ascospores of Byssochlamys spp., Neosartorya spp., and Talaromyces spp. that are resistant to high pressures and high temperatures, requiring the combination of both variables to be inactivated. This review aims to cover the literature available concerning the effects of HPP at room-like temperatures, and its combination with high temperatures, and high-pressure cycling, to inactivate fungi spores, including the main factors affecting spores' resistance to high-pressure, such as pH, water activity, nutritional composition of the food matrix and ascospore age, as well as the changes in the spore ultrastructure, and the parameters to consider regarding their inactivation by HPP.
Collapse
Affiliation(s)
- Carlos A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sílvia A Moreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Liliana G Fidalgo
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,Escola Superior Agrária, Instituto Politécnico de Beja, Beja, Portugal
| | - Rita S Inácio
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco J Barba
- Area de Nutrición y Bromatología, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Jorge A Saraiva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Hsp genes are differentially expressed during Trichoderma asperellum self-recognition, mycoparasitism and thermal stress. Microbiol Res 2019; 227:126296. [DOI: 10.1016/j.micres.2019.126296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
22
|
Trehalose induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress. Appl Microbiol Biotechnol 2019; 103:5379-5390. [PMID: 31069486 DOI: 10.1007/s00253-019-09834-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 10/26/2022]
Abstract
Trehalose is a nonreducing disaccharide, and it plays an intracellular protective role in organisms under various stress conditions. In this study, the trehalose synthesis and its protective role in Pleurotus ostreatus were investigated. As a signal in metabolic regulation, reactive oxygen species (ROS) accumulated in the mycelia of P. ostreatus under heat stress (HS). Furthermore, mycelial growth was significantly inhibited, and the malondialdehyde (MDA) level significantly increased under HS. First, exogenous addition of H2O2 inhibited mycelial growth and elevated the MDA level, while N-acetyl cysteine (NAC) and vitamin C (VC) reduced the MDA level and recovered mycelial growth under HS by scavenging ROS. These results indicated that the mycelial radial growth defect under HS might be partly caused by ROS accumulation. Second, adding NAC and VC to the media resulted in rescued trehalose accumulation, which indicated that ROS has an effect on inducing trehalose synthesis. Third, the mycelial growth was recovered by addition of trehalose to the media after HS, and the MDA level was reduced. This effect was further verified by the overexpression of genes for trehalose-6-phosphate synthase (TPS) and neutral trehalase (NTH), which led to increased and reduced trehalose content, respectively. In addition, adding validamycin A (NTH inhibitor) to the media promoted trehalose accumulation and the recovered mycelial growth after HS. In conclusion, trehalose production was partly induced by ROS accumulation in the mycelia under HS, and the accumulated trehalose could promote the recovery of growth after HS, partly by reducing the MDA level in the mycelia.
Collapse
|
23
|
Li S, Yue Q, Zhou S, Yan J, Zhang X, Ma F. Trehalose Contributes to Gamma-Linolenic Acid Accumulation in Cunninghamella echinulata Based on de Novo Transcriptomic and Lipidomic Analyses. Front Microbiol 2018; 9:1296. [PMID: 29963034 PMCID: PMC6013572 DOI: 10.3389/fmicb.2018.01296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022] Open
Abstract
Gamma-linolenic acid (GLA) is essential for the well-being of humans and other animals. People may lack GLA because of aging or diseases, and thus, dietary supplements or medical reagents containing GLA-enriched lipids are in demand. Cunninghamella echinulata is a potential GLA-producing strain. Interestingly, we found that the GLA content of C. echinulata FR3 was up to 21% (proportion of total lipids) when trehalose was used as a carbon source, significantly higher than the 13% found when glucose was used. Trehalose is quite common and can be accumulated in microorganisms under stress conditions. However, little information is available regarding the role of trehalose in GLA synthesis and accumulation. Our study aimed to understand how the metabolism of C. echinulata responds to trehalose as a carbon source for GLA and lipid biosynthesis. We profiled the major sugars, fatty acids, phospholipids, and gene transcripts of C. echinulata FR3 grown in trehalose medium with glucose as a control by de novo transcriptomics, lipidomics, and other methods. The results showed that trehalose could influence the expression of desaturases and that the GLA proportion increased because of delta-6 desaturase upregulation. The increased GLA was transferred to the extracellular environment through the active PI ion channel, which prefers polyunsaturated acyl chains. At the same time, trehalose might prevent GLA from peroxidation by forming a trehalose-polyunsaturated fatty acid (PUFA) complex. Our study provides new insights into the functions of trehalose in GLA accumulation.
Collapse
Affiliation(s)
- Shue Li
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Yue
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhou
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yan
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| |
Collapse
|
24
|
Shin KS, Park HS, Kim Y, Heo IB, Kim YH, Yu JH. Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response. J Proteomics 2016; 148:26-35. [DOI: 10.1016/j.jprot.2016.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/26/2023]
|
25
|
Wyatt TT, Wösten HAB, Dijksterhuis J. Fungal spores for dispersion in space and time. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:43-91. [PMID: 23942148 DOI: 10.1016/b978-0-12-407672-3.00002-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spores are an integral part of the life cycle of the gross majority of fungi. Their morphology and the mode of formation are both highly variable among the fungi, as is their resistance to stressors. The main aim for spores is to be dispersed, both in space, by various mechanisms or in time, by an extended period of dormancy. Some fungal ascospores belong to the most stress-resistant eukaryotic cells described to date. Stabilization is a process in which biomolecules and complexes thereof are protected by different types of molecules against heat, drought, or other molecules. This review discusses the most important compounds that are known to protect fungal spores and also addresses the biophysics of cell protection. It further covers the phenomena of dormancy, breaking of dormancy, and early germination. Germination is the transition from a dormant cell toward a vegetative cell and includes a number of specific changes. Finally, the applied aspects of spore biology are discussed.
Collapse
Affiliation(s)
- Timon T Wyatt
- Department of Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | |
Collapse
|
26
|
Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:132635. [PMID: 26881084 PMCID: PMC4736001 DOI: 10.1155/2015/132635] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022]
Abstract
Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance.
Collapse
|
27
|
Arinbasarova AY, Biryukova EN, Medentsev AG. Antistress systems of the yeast Yarrowia lipolitica (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Deciphering the ability of Agaricus bisporus var. burnettii to produce mushrooms at high temperature (25°C). Fungal Genet Biol 2014; 73:1-11. [DOI: 10.1016/j.fgb.2014.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/18/2014] [Accepted: 08/31/2014] [Indexed: 01/02/2023]
|
29
|
Lalaymia I, Cranenbrouck S, Declerck S. Maintenance and preservation of ectomycorrhizal and arbuscular mycorrhizal fungi. MYCORRHIZA 2014; 24:323-337. [PMID: 24292254 DOI: 10.1007/s00572-013-0541-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/05/2013] [Indexed: 06/02/2023]
Abstract
Short- to long-term preservation of mycorrhizal fungi is essential for their in-depth study and, in the case of culture collections, for safeguarding their biodiversity. Many different maintenance/preservation methods have been developed in the last decades, from soil- and substrate-based maintenance to preservation methods that reduce (e.g., storage under water) or arrest (e.g., cryopreservation) growth and metabolism; all have advantages and disadvantages. In this review, the principal methods developed so far for ectomycorrhizal and arbuscular mycorrhizal fungi are reported and described given their distinct biology/ecology/evolutionary history. Factors that are the most important for their storage are presented and a protocol proposed which is applicable, although not generalizable, for the long-term preservation at ultra-low temperature of a large panel of these organisms. For ECM fungi, isolates should be grown on membranes or directly in cryovials until the late stationary growth phase. The recommended cryopreservation conditions are: a cryoprotectant of 10% glycerol, applied 1-2 h prior to cryopreservation, a slow cooling rate (1 °C min(-1)) until storage below -130 °C, and fast thawing by direct plunging in a water bath at 35-37 °C. For AMF, propagules (i.e., spores/colonized root pieces) isolated from cultures in the late or stationary phase of growth should be used and incorporated in a carrier (i.e., soil or alginate beads), preferably dried, before cryopreservation. For in vitro-cultured isolates, 0.5 M trehalose should be used as cryoprotectant, while isolates produced in vivo can be preserved in dried soil without cryoprotectant. A fast cryopreservation cooling rate should be used (direct immersion in liquid nitrogen or freezing at temperatures below -130 °C), as well as fast thawing by direct immersion in a water bath at 35 °C.
Collapse
Affiliation(s)
- Ismahen Lalaymia
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Croix du Sud 2, bte L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
30
|
Liao X, Lu HL, Fang W, St Leger RJ. Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Appl Microbiol Biotechnol 2013; 98:777-83. [PMID: 24265026 DOI: 10.1007/s00253-013-5360-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/19/2022]
Abstract
Temperature extremes are an important adverse factor limiting the effectiveness of microbial pest control agents. They reduce virulence and persistence in the plant root-colonizing insect pathogen Metarhizium robertsii. Small heat shock proteins have been shown to confer thermotolerance in many organisms. In this study, we report on the cloning and characterization of a small heat shock protein gene hsp25 from M. robertsii. hsp25 expression was upregulated when the fungus was grown at extreme temperatures (4, 35, and 42 °C) or in the presence of oxidative or osmotic agents. Expression of hsp25 in Escherichia coli increased bacterial thermotolerance confirming that hsp25 encodes a functional heat shock protein. Overexpressing hsp25 in M. robertsii increased fungal growth under heat stress either in nutrient-rich medium or on locust wings and enhanced the tolerance of heat shock-treated conidia to osmotic stress. In addition, overexpression of hsp25 increased the persistence of M. robertsii in rhizospheric soils in outdoor microcosms, though it did not affect survival in bulk soil, indicating that M. robertsii's survival in soil is dependent on interactions with plant roots.
Collapse
Affiliation(s)
- Xinggang Liao
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA,
| | | | | | | |
Collapse
|
31
|
|
32
|
Kim JS, Skinner M, Gouli S, Parker BL. Generating thermotolerant colonies by pairing Beauveria bassiana isolates. FEMS Microbiol Lett 2011; 324:165-72. [DOI: 10.1111/j.1574-6968.2011.02400.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022] Open
Affiliation(s)
- Jae Su Kim
- Entomology Research Laboratory; University of Vermont; Burlington; VT; USA
| | - Margaret Skinner
- Entomology Research Laboratory; University of Vermont; Burlington; VT; USA
| | - Svetlana Gouli
- Entomology Research Laboratory; University of Vermont; Burlington; VT; USA
| | - Bruce L. Parker
- Entomology Research Laboratory; University of Vermont; Burlington; VT; USA
| |
Collapse
|
33
|
Ordaz A, Favela E, Meneses M, Mendoza G, Loera O. Hyphal morphology modification in thermal adaptation by the white-rot fungus Fomes sp. EUM1. J Basic Microbiol 2011; 52:167-74. [PMID: 21953318 DOI: 10.1002/jobm.201000528] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 05/24/2011] [Indexed: 11/11/2022]
Abstract
A thermotolerant white-rot fungus was identified as Fomes sp. EUM1. The strain exhibited maximum growth at 30 °C, with activation and inactivation energy values of 68 and 32 kJ/mol, respectively. The temperature affected the hyphal morphology, which was related to the thermotolerance of the microorganism: A shift from 30 to 40 °C in the growth temperature caused a decrease (15%) in mycelium branching; also longer (32%) and thinner (13%) hyphae were produced. In addition, as the temperature rose from 25 to 45 °C, an increase was observed in both the hyphal surface area (43%) and the surface growth rate (193%). The modification of the hyphal morphology suggests a strategy to colonize nutrient-rich areas while spending minimal energy for biomass formation under thermal stress.
Collapse
Affiliation(s)
- Armando Ordaz
- Department of Biotechnology, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, DF, Mexico
| | | | | | | | | |
Collapse
|
34
|
Agni’s fungi: heat-resistant spores from the Western Ghats, southern India. Fungal Biol 2011; 115:833-8. [DOI: 10.1016/j.funbio.2011.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/13/2011] [Accepted: 06/20/2011] [Indexed: 11/21/2022]
|
35
|
|
36
|
Voyron S, Roussel S, Munaut F, Varese GC, Ginepro M, Declerck S, Filipello Marchisio V. Vitality and genetic fidelity of white-rot fungi mycelia following different methods of preservation. ACTA ACUST UNITED AC 2009; 113:1027-38. [PMID: 19540916 DOI: 10.1016/j.mycres.2009.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 04/22/2009] [Accepted: 06/12/2009] [Indexed: 11/17/2022]
Affiliation(s)
- Samuele Voyron
- University of Turin, Department of Plant Biology, Viale P.A. Mattioli 25, 10125 Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Nevarez L, Vasseur V, Le Dréan G, Tanguy A, Guisle-Marsollier I, Houlgatte R, Barbier G. Isolation and analysis of differentially expressed genes in Penicillium glabrum subjected to thermal stress. Microbiology (Reading) 2008; 154:3752-3765. [PMID: 19047743 DOI: 10.1099/mic.0.2008/021386-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- L. Nevarez
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université Européenne de Bretagne, Ecole Supérieure de Microbiologie et Sécurité Alimentaire de Brest, Technopôle Brest-Iroise, 28280 Plouzané, France
| | - V. Vasseur
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université Européenne de Bretagne, Ecole Supérieure de Microbiologie et Sécurité Alimentaire de Brest, Technopôle Brest-Iroise, 28280 Plouzané, France
| | - G. Le Dréan
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université Européenne de Bretagne, Ecole Supérieure de Microbiologie et Sécurité Alimentaire de Brest, Technopôle Brest-Iroise, 28280 Plouzané, France
| | - A. Tanguy
- Evolution et Génétique des Populations Marines, UMR CNRS 7144, Université Pierre et Marie Curie, Station Biologique de Roscoff, Place Georges Teissier, 29682 Roscoff Cedex, France
| | - I. Guisle-Marsollier
- Plate-forme Transcriptomique Ouest-Génopôle, Institut du Thorax INSERM U533, 1 Rue Gaston Veil, BP 53508, 44035 Nantes, Cedex 1, France
| | - R. Houlgatte
- Plate-forme Transcriptomique Ouest-Génopôle, Institut du Thorax INSERM U533, 1 Rue Gaston Veil, BP 53508, 44035 Nantes, Cedex 1, France
| | - G. Barbier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université Européenne de Bretagne, Ecole Supérieure de Microbiologie et Sécurité Alimentaire de Brest, Technopôle Brest-Iroise, 28280 Plouzané, France
| |
Collapse
|