1
|
Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010276. [PMID: 35011508 PMCID: PMC8746661 DOI: 10.3390/molecules27010276] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
The molecular hybridization approach has been used to develop compounds with improved efficacy by combining two or more pharmacophores of bioactive scaffolds. In this context, hybridization of various relevant pharmacophores with phenothiazine derivatives has resulted in pertinent compounds with diverse biological activities, interacting with specific or multiple targets. In fact, the development of new drugs or drug candidates based on phenothiazine system has been a promising approach due to the diverse activities associated with this tricyclic system, traditionally present in compounds with antipsychotic, antihistaminic and antimuscarinic effects. Actually, the pharmacological actions of phenothiazine hybrids include promising antibacterial, antifungal, anticancer, anti-inflammatory, antimalarial, analgesic and multi-drug resistance reversal properties. The present review summarizes the progress in the development of phenothiazine hybrids and their biological activity.
Collapse
|
2
|
Laxmikeshav K, Kumari P, Shankaraiah N. Expedition of sulfur-containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update. Med Res Rev 2021; 42:513-575. [PMID: 34453452 DOI: 10.1002/med.21852] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
This review article proposes a comprehensive report of the design strategies engaged in the development of various sulfur-bearing cytotoxic agents. The outcomes of various studies depict that the sulfur heterocyclic framework is a fundamental structure in diverse synthetic analogs representing a myriad scope of therapeutic activities. A number of five-, six- and seven-membered sulfur-containing heterocyclic scaffolds, such as thiazoles, thiadiazoles, thiazolidinediones, thiophenes, thiopyrans, benzothiazoles, benzothiophenes, thienopyrimidines, simple and modified phenothiazines, and thiazepines have been discussed. The subsequent studies of the derivatives unveiled their cytotoxic effects through multiple mechanisms (viz. inhibition of tyrosine kinases, topoisomerase I and II, tubulin, COX, DNA synthesis, and PI3K/Akt and Raf/MEK/ERK signaling pathways), and several others. Thus, our concise illustration explains the design strategy and anticancer potential of these five- and six-membered sulfur-containing heterocyclic molecules along with a brief outline on seven-membered sulfur heterocycles. The thorough assessment of antiproliferative activities with the reference drug allows a proficient assessment of the structure-activity relationships (SARs) of the diversely synthesized molecules of the series.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
3
|
Fu DJ, Cui XX, Zhu T, Zhang YB, Hu YY, Zhang LR, Wang SH, Zhang SY. Discovery of novel indole derivatives that inhibit NEDDylation and MAPK pathways against gastric cancer MGC803 cells. Bioorg Chem 2021; 107:104634. [PMID: 33476867 DOI: 10.1016/j.bioorg.2021.104634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
A series of novel indole derivatives were synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (MGC803, EC-109 and PC-3). Among these analogues, 2-(5-methoxy-1H-indol-1-yl)-N-(4-methoxybenzyl)-N-(3,4,5-trimethoxyphenyl)acetamide (V7) showed the best inhibitory activity against MGC803 cells with an IC50 value of 1.59 μM. Cellular mechanisms elucidated that V7 inhibited colony formation, induced apoptosis and arrested cell cycle at G2/M phase. Importantly, indole analogue V7 inhibited NEDDylation pathway and MAPK pathway against MGC803 cells.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xin-Xin Cui
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Zhu
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yan-Bing Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yang-Yang Hu
- Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Li-Rong Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Hui Wang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
4
|
Fu DJ, Liu SM, Li FH, Yang JJ, Li J. Antiproliferative benzothiazoles incorporating a trimethoxyphenyl scaffold as novel colchicine site tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2020; 35:1050-1059. [PMID: 32299262 PMCID: PMC7178834 DOI: 10.1080/14756366.2020.1753721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Tubulin polymerisation inhibitors exhibited an important role in the treatment of patients with prostate cancer. Herein, we reported the medicinal chemistry efforts leading to a new series of benzothiazoles by a bioisosterism approach. Biological testing revealed that compound 12a could significantly inhibit in vitro tubulin polymerisation of a concentration dependent manner, with an IC50 value of 2.87 μM. Immunofluorescence and EBI competition assay investigated that compound 12a effectively inhibited tubulin polymerisation and directly bound to the colchicine-binding site of β-tubulin in PC3 cells. Docking analysis showed that 12a formed hydrogen bonds with residues Tyr357, Ala247 and Val353 of tubulin. Importantly, it displayed the promising antiproliferative ability against C42B, LNCAP, 22RV1 and PC3 cells with IC50 values of 2.81 μM, 4.31 μM, 2.13 μM and 2.04 μM, respectively. In summary, compound 12a was a novel colchicine site tubulin polymerisation inhibitor with potential to treat prostate cancer.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Si-Meng Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Fu-Hao Li
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jia-Jia Yang
- Department of Pharmacy, People's Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
5
|
Discovery of novel tertiary amide derivatives as NEDDylation pathway activators to inhibit the tumor progression in vitro and in vivo. Eur J Med Chem 2020; 192:112153. [PMID: 32135407 DOI: 10.1016/j.ejmech.2020.112153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
NEDDylation pathway regulates multiple physiological process, unlike inhibitors, NEDDylation activators are rarely studied. Novel amide derivatives were synthesized and evaluated for antiproliferative activity against MGC803, MCF-7 and PC-3 cells. Among them, Ⅶ-31 displayed the most potent activity with an IC50 value of 94 nmol/L against MGC803 cells. Cellular mechanisms elucidated that Ⅶ-31 inhibited the cell viability, arrested cell cycle at G2/M phase and induced apoptosis via intrinsic and extrinsic pathways against MGC803 cells. In addition, Ⅶ-31 activated NAE1-Ubc12-Cullin1 NEDDylation via interacting with NAE1 directly. Furthermore, the activation of NEDDylation resulted in the degradation of inhibitor of apoptosis proteins (IAPs). Importantly, Ⅶ-31 inhibited tumor growth in xenograft models in vivo without the apparent toxicity. In summary, it is the first time to reveal that Ⅶ-31 deserves consideration for cancer therapy as a NEDDylation activator.
Collapse
|
6
|
Antiproliferative Evaluation In Vitro of a New Chalcone Inducing Apoptosis by ROS Generation Against MGC-803 Cells. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02034-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Discovery of indoline derivatives that inhibit esophageal squamous cell carcinoma growth by Noxa mediated apoptosis. Bioorg Chem 2019; 92:103190. [PMID: 31465969 DOI: 10.1016/j.bioorg.2019.103190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/27/2019] [Accepted: 08/08/2019] [Indexed: 11/23/2022]
Abstract
A series of novel indoline derivatives were synthesized and evaluated for antiproliferative activity against four selected cancer cell lines (Hela, A549, HepG2 and KYSE30). Among them, compound 20 displayed the potent inhibition activity against esophageal cancer cells (Kyse30, Kyse450, Kyse510 and EC109). Cellular mechanism studies in esophageal squamous cell carcinoma (ESCC) cells elucidated compound 20 inhibited cell growths in vitro and in vivo, reduced colony formation, arrested cell cycle at M phase, and induced Noxa-dependent apoptosis in ESCC. Importantly, compound 20 was identified as a novel Noxa mediated apoptosis inducer. These results suggested that compound 20 might be a promising anticancer agent with potential for development of further clinical applications.
Collapse
|
8
|
Fu DJ, Li JH, Yang JJ, Li P, Zhang YB, Liu S, Li ZR, Zhang SY. Discovery of novel chalcone-dithiocarbamates as ROS-mediated apoptosis inducers by inhibiting catalase. Bioorg Chem 2019; 86:375-385. [DOI: 10.1016/j.bioorg.2019.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 01/14/2023]
|
9
|
Antiproliferative Evaluation of (E)-3-(3-(Allyloxy)-2-Methoxyphenyl)-1-(2,4,6-Trimethoxyphenyl)Prop-2-En-1-One as a Novel Apoptosis Inducer Against Prostate Cancer PC-3 Cells. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Fu DJ, Li P, Wu BW, Cui XX, Zhao CB, Zhang SY. Molecular diversity of trimethoxyphenyl-1,2,3-triazole hybrids as novel colchicine site tubulin polymerization inhibitors. Eur J Med Chem 2019; 165:309-322. [PMID: 30690300 DOI: 10.1016/j.ejmech.2019.01.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Structurally diverse trimethoxyphenyl-1,2,3-triazole hybrids were designed, synthesized and evaluated for their antiproliferative activity against three cancer cell lines (PC3, MGC803 and HepG2). Among them, trimethoxyphenyl-1,2,3-triazole containing the coumarin fragement 19c displayed better antiproliferative activity results with IC50 values from 0.13 μM to 1.74 μM than anticancer drug colchicine. Compound 19c could inhibit MGC803 cell growth and colony formation, induce G2/M phase arrest by down expression of CDK1, and promote apoptosis by regulating DR5 and Bcl-2 family. Moreover, 19c strongly inhibited tubulin polymerization by interacting with the colchicine site.
Collapse
Affiliation(s)
- Dong-Jun Fu
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Ping Li
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo-Wen Wu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin-Xin Cui
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Cheng-Bin Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sai-Yang Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|