1
|
Cytotoxic urea Schiff base complexes for multidrug discovery as anticancer activity and low in vivo oral assessing toxicity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
2
|
Ayipo YO, Osunniran WA, Babamale HF, Ayinde MO, Mordi MN. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metal-ligand coordination perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Gurusamy S, Krishnaveni K, Sankarganesh M, Nandini Asha R, Mathavan A. Synthesis, characterization, DNA interaction, BSA/HSA binding activities of VO(IV), Cu(II) and Zn(II) Schiff base complexes and its molecular docking with biomolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Khalil NK, Abo Dena AS, El-Sherbiny IM. Boosting the mechanical strength and solubility-enhancement properties of hydroxypropyl-β-cyclodextrin nanofibrous films. Drug Dev Ind Pharm 2021; 47:1413-1423. [PMID: 34735303 DOI: 10.1080/03639045.2021.1995407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
2-hydroxypropyl-β-cyclodextrin (HPβCD) nanofiber films have high surface-to-volume ratio and show high dissolution rate of hydrophobic drugs. However, the solubility-enhancement effect of HPβCD films may not be enough to include an effective dose in a sublingually administrable film. Moreover, unmodified HPβCD films are very brittle and difficultly transported and/or handled. So, the addition of polyethylene glycol (PEG) as a plasticizer was suggested to improve their ultimate tensile strength (UTS) and solubilization of hydrophobic drugs. Accordingly, six nanofiber films were developed and characterized, using three molecular weights of PEG (400, 1500 and 6000 Da) with two concentrations each (1:100 and 2:100 PEG:HPβCD), in addition to the unmodified HPβCD nanofibrous film. The results revealed that adding 1:100 of PEG 400 increases the UTS (∼2-fold) and the average fiber diameter (AFD) (∼3-fold). Moreover, the addition of PEG 400 significantly increased the solubility of two hydrophobic model drugs; coumarin (up to 7.7-fold of the original solubility) and 2-nitroimidazole (up to 1.6-fold of the original solubility). However, with higher PEG concentration/molecular weight, both AFD and UTS of the films decreased. On the other hand, it was noted that the solubility of the two model drugs decreased upon using 1500-Da PEG, and then increased with 6000-Da PEG.
Collapse
Affiliation(s)
- Noha K Khalil
- Nanomedicine Laboratory, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Laboratory, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt.,Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
5
|
Molecular Dynamics Simulation of 2-Benzimidazolyl-Urea with DPPC Lipid Membrane and Comparison with a Copper(II) Complex Derivative. MEMBRANES 2021; 11:membranes11100743. [PMID: 34677508 PMCID: PMC8537910 DOI: 10.3390/membranes11100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
Benzimidazole derivatives have gained attention recently due to their wide pharmacological activity acting as anti-inflammatory, hypotensive, analgesic, and anti-aggregatory agents. They are also common ligands in transition metal coordination chemistry, forming complex compounds with enhanced biological properties, especially in targeted cancer therapy. A key issue to understand anti-tumour effects is drug permeability through cellular membranes, as poor permeability outcomes can avert further futile drug development. In this work, we conducted atomistic molecular dynamics (MD) simulations and biased MD simulations to explore the interactions of 2-benzimidazolyl-urea with a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) together with a previously synthesized copper(II) complex compound. The aim was to study the permeability of these compounds by assessing their free energy profile along the bilayer normal. The simulations indicated that both the ligand (2-benzimidazolyl-urea, BZIMU) and the complex show a similar behaviour, yielding high energy barriers for the permeation process. However, with increasing concentration of BZIMU, the molecules tend to aggregate and form a cluster, leading to the formation of a pore. Clustering and pore formation can possibly explain the previously observed cytotoxicity of the BZIMU molecule via membrane damage.
Collapse
|
6
|
DNA interaction, anticancer, cytotoxicity and genotoxicity studies with potential pyrazine-bipyrazole dinuclear µ-oxo bridged Au(III) complexes. Mol Divers 2021; 26:2085-2101. [PMID: 34561737 DOI: 10.1007/s11030-021-10317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Pyrazine-bipyrazole-based µ-oxo bridged dinuclear Au(III) complexes were synthesized and characterized by various spectrometric (1H-NMR, 13C (APT) NMR, FT-IR, Mass spectrometry) and analytical techniques (elemental analysis and conductance measurement). The evaluation of DNA binding activity by UV-Vis absorption spectra and viscosity measurement demonstrated that all the compounds intercalate in between the stacks of DNA base pair and the binding constant values were observed in the range of 5.4 × 104-2.17 × 105 M-1. The molecular docking study also supports the intercalation mode of binding. The anti-proliferation activity of complexes on A549 (Lung adenocarcinoma) cells by MTT assay demonstrated IC50 values in the range of 47.46 -298.12 μg/mL. The genotoxicity of compounds was checked by smearing observed in the DNA of S. pombe cell under the influence of complexes. The in vivo cytotoxicity of compounds against brine shrimp demonstrated the LC50 values in the range of 4.59-27.22 μg/mL. The promising results of the Au(III) complexes received significant attention and make them suitable for the new metallodrugs after the detailed mechanistic biological study.
Collapse
|
7
|
Yu C, Heidari Majd M, Shiri F, Shahraki S, Karimi P. The role of folic acid in inducing of apoptosis by zinc(II) complex in ovary and cervix cancer cells. Mol Divers 2021; 26:1545-1555. [PMID: 34417716 DOI: 10.1007/s11030-021-10293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
Herein, the synthesis, structure, binding affinity, cytotoxicity, and apoptotic properties of the new Zn(II) complex composed of folic acid and bipyridine ligands are reported. Because folic acid has the ability to target cancer cells directly, so it can play a role in targeted drug delivery of the complex and be useful to distinguish normal cells from cancerous. After characterization of Zinc complex utilizing FTIR, EA, and NMR, the results of MTT assay were shown that viability levels of two FR-positive cell lines (HeLa and Ovcar-3) are dependent on time and concentration of [Zn(bpy)FA], whereas, did not show a significant effect on FR-negative cell lines (A549). Also, Real-time PCR revealed that the presence of FA can influence the expression of apoptosis in cervical carcinoma HeLa cells while cisplatin alone doesn't have the ability to trigger apoptosis. Furthermore, the experimental results were evaluated using pharmacophore modeling and molecular docking analysis. Finally, the stability of the Zn(II) complex was surveyed using quantum mechanical studies.
Collapse
Affiliation(s)
- Chuanrong Yu
- Department of Gynecology and Obstetrics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Mostafa Heidari Majd
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.
| | - Fereshteh Shiri
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Somaye Shahraki
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Pouya Karimi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
8
|
Gandhi DH, Vaidya FU, Pathak C, Patel TN, Bhatt BS. Mechanistic insight of cell anti-proliferative activity of fluoroquinolone drug-based Cu(II) complexes. Mol Divers 2021; 26:869-878. [PMID: 33646502 DOI: 10.1007/s11030-021-10199-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
Pefloxacin-based mixed ligand Cu(II) complexes with substituted isatin of type [Cu(Isatin)(Pefloxacin)Cl] were synthesized, and characterized by EPR, mass, FT-IR, electronic spectrometry, metal content, magnetic moment, and conductance measurement. The g factors g [Formula: see text] > g [Formula: see text] > 2.0023 observed in EPR suggest a square-pyramidal environment of ligands around the copper metal. The compounds were screened for diverse biological activities. The compounds inhibit efficiently the cell proliferation of HCT 116 cancer cells. To take the insight of anticancer activity mechanism, we investigated compound-1 for further cellular assay-based biological activities like trypan blue assay, cell morphological alteration assay, colony formation assay, cell apoptosis, and cell necrosis assay. The compound-1 induced distinct morphological alteration in cells, inhibits cell viability, decreases % plating efficiency, and decreases the clonogenic ability of the HCT 116 cells. The cell death mechanism was confirmed by annexin V-FITC / PI assay and LDH release assay. The positive annexin V/PI stained cells in presence of compound-1 and the absence of a significant amount of lactate dehydrogenase suggest cell apoptosis mechanism for anticancer activity of compounds. We also screened compounds for in vitro antibacterial and cytotoxic activities. Synthesis, characterization, antibacterial, anticancer, and cytotoxicity activities of pefloxacin based Cu(II) complexes were studied. The compound -1 is more potent than standard anticancer drugs and it induced apoptosis to the HCT 116 cells.
Collapse
Affiliation(s)
| | - Foram U Vaidya
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| | - Chandramani Pathak
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, 122413, India
| | - Tushar N Patel
- C. U. Shah University, Wadhwancity, Gujarat, 363035, India
| | - Bhupesh S Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India.
| |
Collapse
|
9
|
Masaryk L, Tesarova B, Choquesillo-Lazarte D, Milosavljevic V, Heger Z, Kopel P. Structural and biological characterization of anticancer nickel(II) bis(benzimidazole) complex. J Inorg Biochem 2021; 217:111395. [PMID: 33610033 DOI: 10.1016/j.jinorgbio.2021.111395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
In the present study, nickel(II) complex with 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole (tebb) of formula [Ni(tebb)2](ClO4)2 has been prepared and its structure was proved by X-ray crystallography. The central nickel atom is in deformed octahedral vicinity. Four nitrogen atoms of two ligands form plane of octahedral and sulfur atoms are in apical positions. Perchlorate anions are outside the coordination sphere. The coordination compound was tested for its biological activities in an array of in vitro assays. It was found that the synthesized complex possesses interesting biological activity, which is most likely related to its cell-type related uptake kinetics. The synthesized complex is readily uptaken by malignant MDA-MB-231 and CACO-2 cells with the lowest uptake by healthy Hs27 fibroblasts. The lowest IC50 values were obtained for MDA-MB-231 cells (5.2-12.7 μM), highlighting exceptional differential cytotoxicity (IC50 values for healthy fibroblasts were 38.6-51.5 μM). Furthermore, it was found the complex is capable to cause hydrolytic DNA cleavage, promotes an efficient DNA fragmentation and to trigger an extensive formation of intracellular reactive oxygen species. Overall, current work presents a synthesis of Ni(II) coordination compound with interesting biological behavior and with a promising potential to be further tested in pre-clinical models.
Collapse
Affiliation(s)
- Lukas Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Barbora Tesarova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| |
Collapse
|
10
|
Conjugation of Penicillin-G with Silver(I) Ions Expands Its Antimicrobial Activity against Gram Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9010025. [PMID: 31941048 PMCID: PMC7168214 DOI: 10.3390/antibiotics9010025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/06/2023] Open
Abstract
Conjugation of penicillin G (PenH) with silver(I) ions forms a new CoMeD (conjugate of metal with a drug) with formula [Ag(pen)(CH3OH)]2 (PenAg). PenAg was characterized by a plethora of physical and spectroscopic techniques, which include in the solid state m.p.; elemental analysis; X-ray fluorescence (XRF) spectroscopy; scanning electron microscopy (SEM); energy-dispersive X-ray spectroscopy (EDX); FT-IR; and in solution: attenuated total reflection spectroscopy (FT-IR-ATR), UV–Vis, 1H NMR, and atomic absorption (AA). The structure of PenAg was determined by NMR spectroscopy. Silver(I) ions coordinate to the carboxylic group of PenH, while secondary intra-molecular interactions are developed through (i) the nitrogen atom of the amide group in MeOD-d4 or (ii) the sulfur atom in the thietane ring in deuterated dimethyl sulfoxide DMSO-d6. The antibacterial activities of PenAg and the sodium salt of penicillin (PenNa) (the formulation which is clinically used) against Gram positive (Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus)) and Gram negative (Pseudomonas aeruginosa (P. aeuroginosa PAO1)) bacteria were evaluated by the means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone (IZ). PenAg inhibits the growth of the Gram negative bacterial strain P. aeuroginosa with a MIC value of 23.00 ± 2.29 μM, in contrast to PenNa, which shows no such activity (>2 mM). The corresponding antimicrobial activities of PenAg against the Gram positive bacteria S. epidermidis and S. aureus are even better than those of PenNa. Moreover, PenAg exhibits no in vivo toxicity against Artemia salina at concentration up to 300 μΜ. The wide therapeutic window and the low toxicity, make PenAg a possible candidate for the development of a new antibiotic.
Collapse
|