1
|
Nath R, Manna S, Panda S, Maity A, Bandyopadhyay K, Das A, Khan SA, Debnath B, Akhtar MJ. Flavonoid Based Development of Synthetic Drugs: Chemistry and Biological Activities. Chem Biodivers 2025; 22:e202401899. [PMID: 39462980 DOI: 10.1002/cbdv.202401899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The toxicity associated with synthetic drugs used for treating various diseases is common. This led to a growing interest in searching and incorporating natural functional core structures such as flavonoid and their derivatives via chemical modifications to overcome the toxicity problems and enhance their biological spectrum. Natural core structures such as flavonoids are accepted due to their safety to the environment and owing to their varieties of biological activities such as anti-Alzheimer, antimicrobial, anticancer, anti-inflammatory, antidiabetics, and antiviral properties. Based on their chemical structure, flavonoids are classified into various classes such as flavone, flavanol, flavanone, isoflavone, and Anthocyanin, etc. The present review focuses on the potential role of the flavonoid ring-containing derivatives, highlighting their ability to prevent and treat non-communicable diseases such as diabetes, Alzheimer's, and cancer. The pharmacological activities of the flavonoid's derivatives are mainly attributed to their antioxidant effects against free radicals, and reactive oxygen species as well as their ability to act as enzymes inhibitors. The review covers the synthetic strategies of flavonoid derivatives, structure activity relationship (SAR), and in silico studies to improve the efficacy of these compounds. The SAR, molecular docking analysis will enable medicinal chemists to search further, develop potent and newer therapeutic agents.
Collapse
Affiliation(s)
- Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Swarup Manna
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Arindam Maity
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Krishnalekha Bandyopadhyay
- Department of Pharmacology, JSS College of Pharmacy, Mysuru, Bangalore-Mysore Road, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Arijit Das
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| |
Collapse
|
2
|
Remya RS, Ramalakshmi N, Aaliya MGS, Concilia WB, Thasneem SF, Rohini S, Narmadha N. Benzimidazole Conjugates as Multi-target Anticancer Agents - A Comprehensive Review. Med Chem 2025; 21:169-194. [PMID: 40070140 DOI: 10.2174/0115734064313626240912063644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 05/13/2025]
Abstract
Cancer is the second leading cause of mortality globally and is characterized by a multifactorial etiology. Drug resistance and multidrug resistance are the reasons for the failure of many anticancer drugs that are in clinical practice now. The current review is a complete review of benzimidazole hybrids with different heterocyclic rings, which are potential anticancer agents. We reviewed around 70 research works of benzimidazole hybrids published in high-impact journals, along with a short discussion of structural features responsible for its activity against various cancers. This review highlighted benzimidazole hybrids as targeted anticancer agents with effects on multiple targets. Researchers working on targeted medications for cancer treatment will benefit from this review when designing new scaffolds with benzimidazole moieties.
Collapse
Affiliation(s)
- R S Remya
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai, India
| | - N Ramalakshmi
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai, India
| | - M G Safiya Aaliya
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai, India
| | - W Blossom Concilia
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai, India
| | - S Fameetha Thasneem
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai, India
| | - S Rohini
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai, India
| | - N Narmadha
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai, India
| |
Collapse
|
3
|
Kumar D, Salahuddin, Mazumder A, Kumar R, Ahsan MJ, Yar MS, Abbussalam, Tyagi PK, Chaitanya MVNL. Pharmacological Evaluation of Bioisosterically Replaced and Triazole- Tethered Derivatives for Anticancer Therapy. Med Chem 2025; 21:264-293. [PMID: 40351067 DOI: 10.2174/0115734064320533240903062533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 05/14/2025]
Abstract
Cancer has been the cause of the highest number of deaths in the human population despite the development and advancement in treatment therapies. The toxicity, drug resistance, and side effects of the current medicaments and therapies have left the void for more research and development. One of the possibilities to fill this void is by incorporating Triazole moieties within existing anticancer pharmacophores to develop new hybrid drugs with less toxicity and more potency. The placement of nitrogen in the triazole ring has endowed its characterization of being integrated with anticancer pharmacophores via bioisosteric replacement, click chemistry and organocatalyzed approaches. This review paper emphasizes the discussions from articles published from the early 2000s to the current 2020s about the triazole-based derivatives used in anticancer therapy, elaborating more on their chemical structures, target receptors or enzymes, mechanism of action, structure-activity relationships, different triazole-derived hybrid drugs under clinical and nonclinical trials, and recent advancements toward developing more potent and less toxic anticancer agents.
Collapse
Affiliation(s)
- Dipesh Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jahangirabad Institute of Technology, Jahangirabad Fort, Jahangirabad, Barabanki Uttar Pradesh, 225203, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Abbussalam
- Department of Physiology, Era's Lucknow Medical College and Hospital, Lucknow, 226003, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering and Technology, Plot No.19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
4
|
Farooq S, Ngaini Z. Facile Synthesis and Applications of Flavonoid-Heterocyclic Derivatives. Curr Top Med Chem 2025; 25:47-62. [PMID: 38847246 DOI: 10.2174/0115680266303704240524080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 01/28/2025]
Abstract
Flavonoids belong to the polyphenol group that naturally exists in fruits, vegetables, tea, and grains. Flavonoids, as secondary metabolites, show indispensable contributions to biological processes and the responses of plants to numerous environmental factors. The bioactivity of flavonoids depends on C6-C3-C6 ring substitution patterns that exhibit bioactive antioxidant, antimicrobial, antifungal, antitumor, and anti-inflammatory properties. The synthesis of flavonoids has been reported by various methodologies. Therefore, the present review systematically summarizes the synthesis of recent heterocyclic flavonoid derivatives via facile synthetic approaches since the research in flavonoids is useful for therapeutic and biotechnology fields.
Collapse
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 54000, Lahore, Pakistan
| | - Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
5
|
Marinescu M. Benzimidazole-Triazole Hybrids as Antimicrobial and Antiviral Agents: A Systematic Review. Antibiotics (Basel) 2023; 12:1220. [PMID: 37508316 PMCID: PMC10376251 DOI: 10.3390/antibiotics12071220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial infections have attracted the attention of researchers in recent decades, especially due to the special problems they have faced, such as their increasing diversity and resistance to antibiotic treatment. The emergence and development of the SARS-CoV-2 infection stimulated even more research to find new structures with antimicrobial and antiviral properties. Among the heterocyclic compounds with remarkable therapeutic properties, benzimidazoles, and triazoles stand out, possessing antimicrobial, antiviral, antitumor, anti-Alzheimer, anti-inflammatory, analgesic, antidiabetic, or anti-ulcer activities. In addition, the literature of the last decade reports benzimidazole-triazole hybrids with improved biological properties compared to the properties of simple mono-heterocyclic compounds. This review aims to provide an update on the synthesis methods of these hybrids, along with their antimicrobial and antiviral activities, as well as the structure-activity relationship reported in the literature. It was found that the presence of certain groups grafted onto the benzimidazole and/or triazole nuclei (-F, -Cl, -Br, -CF3, -NO2, -CN, -CHO, -OH, OCH3, COOCH3), as well as the presence of some heterocycles (pyridine, pyrimidine, thiazole, indole, isoxazole, thiadiazole, coumarin) increases the antimicrobial activity of benzimidazole-triazole hybrids. Also, the presence of the oxygen or sulfur atom in the bridge connecting the benzimidazole and triazole rings generally increases the antimicrobial activity of the hybrids. The literature mentions only benzimidazole-1,2,3-triazole hybrids with antiviral properties. Both for antimicrobial and antiviral hybrids, the presence of an additional triazole ring increases their biological activity, which is in agreement with the three-dimensional binding mode of compounds. This review summarizes the advances of benzimidazole triazole derivatives as potential antimicrobial and antiviral agents covering articles published from 2000 to 2023.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania
| |
Collapse
|
6
|
Wang X, Hu Q, Tang H, Pan X. Isoxazole/Isoxazoline Skeleton in the Structural Modification of Natural Products: A Review. Pharmaceuticals (Basel) 2023; 16:228. [PMID: 37259376 PMCID: PMC9964809 DOI: 10.3390/ph16020228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 03/09/2024] Open
Abstract
Isoxazoles and isoxazolines are five-membered heterocyclic molecules containing nitrogen and oxygen. Isoxazole and isoxazoline are the most popular heterocyclic compounds for developing novel drug candidates. Over 80 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antidiabetic, cardiovascular, and other activities, were reviewed. A review of recent studies on the use of isoxazoles and isoxazolines moiety derivative activities for natural products is presented here, focusing on the parameters that affect the bioactivity of these compounds.
Collapse
Affiliation(s)
| | | | | | - Xinhui Pan
- Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, China
| |
Collapse
|
7
|
Synthesis and In Vitro Anticancer Evaluation of Flavone-1,2,3-Triazole Hybrids. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020626. [PMID: 36677683 PMCID: PMC9860848 DOI: 10.3390/molecules28020626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Hybrid compounds of flavones, namely chrysin and kaempferol, and substituted 1,2,3-triazole derivatives, were synthesized by click reaction of the intermediate O-propargyl derivatives. 4-Fluoro- and 4-nitrobenzyl-1,2,3-triazole-containing hybrid molecules were prepared. The mono- and bis-coupled hybrids were investigated on 60 cell lines of 9 common cancer types (NCI60) in vitro as antitumor agents. Some of them proved to have a significant antiproliferative effect.
Collapse
|
8
|
Saroha B, Kumar G, Kumar R, Kumari M, Kumar S. A minireview of 1,2,3-triazole hybrids with O-heterocycles as leads in medicinal chemistry. Chem Biol Drug Des 2022; 100:843-869. [PMID: 34592059 DOI: 10.1111/cbdd.13966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
Over the past few decades, the dynamic progress in the synthesis and screening of heterocyclic compounds against various targets has made a significant contribution in the field of medicinal chemistry. Among the wide array of heterocyclic compounds, triazole moiety has attracted the attention of researchers owing to its vast therapeutic potential and easy preparation via copper and ruthenium-catalyzed azide-alkyne cycloaddition reactions. Triazole skeletons are found as major structural components in a different class of drugs possessing diverse pharmacological profiles including anti-cancer, anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-inflammatory, anti-diabetic, anti-tubercular, and anti-depressant among various others. Furthermore, in the past few years, a significantly large number of triazole hybrids were synthesized with various heterocyclic moieties in order to gain the added advantage of the improved pharmacological profile, overcoming the multiple drug resistance and reduced toxicity from molecular hybridization. Among these synthesized triazole hybrids, many compounds are available commercially and used for treating different infections/disorders like tazobactam and cefatrizine as potent anti-bacterial agents while isavuconazole and ravuconazole as anti-fungal activities to name a few. In this review, we will summarize the biological activities of various 1,2,3-triazole hybrids with copious oxygen-containing heterocycles as lead compounds in medicinal chemistry. This review will be very helpful for researchers working in the field of molecular modeling, drug design and development, and medicinal chemistry.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Kumari
- Department of Chemistry, Govt. College for Women Badhra, Charkhi Dadri, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
9
|
Xinyi W, Shiqi X, Shishuo C, Yumin S, Jun W. 1,2,3-Triazole derivatives with anti-breast cancer potential. Curr Top Med Chem 2022; 22:1406-1425. [DOI: 10.2174/1568026622666220415225334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Breast cancer is one of the most prevalent malignant diseases and one of the main mortality causes among women across the world. Despite advances in chemotherapy, drug resistance remains major clinical concerns, creating an urgent need to explore novel anti-breast cancer drugs. 1,2,3-Triazole is a privileged moiety, and its derivatives could inhibit cancer cell proliferation, and induce the cell cycle arrest and apoptosis. Accordingly, 1,2,3-triazole derivatives possess profound activity against various cancers including breast cancer. This review summarizes the latest progresses related to the anti-breast cancer potential of 1,2,3-triazole derivatives, covering articles published from January 2017 to December 2021. The mechanisms of action and structure-activity relationships (SARs) are also discussed for further rational design of more effective candidates.
Collapse
Affiliation(s)
- Wu Xinyi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xia Shiqi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cheng Shishuo
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shi Yumin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wang Jun
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| |
Collapse
|
10
|
|
11
|
Pereira D, Pinto M, Correia-da-Silva M, Cidade H. Recent Advances in Bioactive Flavonoid Hybrids Linked by 1,2,3-Triazole Ring Obtained by Click Chemistry. Molecules 2021; 27:230. [PMID: 35011463 PMCID: PMC8746422 DOI: 10.3390/molecules27010230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
As a result of the biological activities of natural flavonoids, several synthetic strategies aiming to obtain analogues with improved potency and/or pharmacokinetic profile have been developed. Since the triazole ring has been associated with several biological activities and metabolic stability, hybridization with a 1,2,3-triazole ring has been increasingly reported over the last years. The feasible synthesis through copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) has allowed the accomplishment of several hybrids. Since 2017, almost 700 flavonoid hybrids conjugated with 1,2,3-triazole, including chalcones, flavones, flavanones and flavonols, among others, with antitumor, antimicrobial, antidiabetic, neuroprotective, anti-inflammatory, antioxidant, and antifouling activity have been reported. This review compiles the biological activities recently described for these hybrids, highlighting the mechanism of action and structure-activity relationship (SAR) studies.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
12
|
Zhang X, Zhang S, Zhao S, Wang X, Liu B, Xu H. Click Chemistry in Natural Product Modification. Front Chem 2021; 9:774977. [PMID: 34869223 PMCID: PMC8635925 DOI: 10.3389/fchem.2021.774977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access the molecular diversity and unique functions of complex natural products up to now. It enables the ready synthesis of diverse sets of natural product derivatives either for the optimization of their drawbacks or for the construction of natural product-like drug screening libraries. This paper showcases the state-of-the-art development of click chemistry in natural product modification and summarizes the pharmacological activities of the active derivatives as well as the mechanism of action. The aim of this paper is to gain a deep understanding of the fruitful achievements and to provide perspectives, trends, and directions regarding further research in natural product medicinal chemistry.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
13
|
Aissa I, Abdelkafi-Koubaa Z, Chouaïb K, Jalouli M, Assel A, Romdhane A, Harrath AH, Marrakchi N, Ben Jannet H. Glioblastoma-specific anticancer activity of newly synthetized 3,5-disubstituted isoxazole and 1,4-disubstituted triazole-linked tyrosol conjugates. Bioorg Chem 2021; 114:105071. [PMID: 34130108 DOI: 10.1016/j.bioorg.2021.105071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/10/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022]
Abstract
Two series of 3,5-disubstituted isoxazoles (6a-e) and 1,4-disubstituted triazoles (8a-e) derivatives have been synthesized from tyrosol (1), a natural phenolic compound, detected in several natural sources such as olive oil, and well-known by its wide spectrum of biological activities. Copper-catalyzed microwave-assisted 1,3-dipolar cycloaddition reactions between tyrosol-alkyne derivative 2 and two series of aryl nitrile oxides (5a-e) and azides (7a-e) regiospecifically afforded 3,5-disubstituted isoxazoles (6a-e) and 1,4-triazole derivatives (8a-e), respectively in quantitative yields. Synthesized compounds were purified and characterized by spectroscopic means including 1D and 2D NMR techniques and HRMS analysis. The newly prepared hybrid molecules have been evaluated for their anticancer and hemolytic activities. Results showed that most derivatives displayed significant antiproliferative activity against human glioblastoma cancer cells (U87) in a dose-dependent manner. Compounds 6d (IC50 = 15.2 ± 1.0 μg/mL) and 8e (IC50 = 21.0 ± 0.9 μg/mL) exhibited more potent anticancer activity. Moreover, most derivatives displayed low hemolytic activity, even at higher concentrations which suggested that these classes of compounds are suitable candidates for further in vivo investigations. The obtained results allow us to consider the newly synthesized isoxazole- and triazole-linked tyrosol derivatives as promising scaffolds for the development of effective anticancer agents.
Collapse
Affiliation(s)
- Imen Aissa
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia
| | - Zaineb Abdelkafi-Koubaa
- Pasteur Institute of Tunis, LR20IPT01, Laboratory of Biomolecules, Venoms and Theranostic Applications, 1002 Tunis, Tunisia; University of Tunis El Manar, 1068 Tunis, Tunisia
| | - Karim Chouaïb
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia
| | - Maroua Jalouli
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Amine Assel
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia
| | - Anis Romdhane
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Naziha Marrakchi
- Pasteur Institute of Tunis, LR20IPT01, Laboratory of Biomolecules, Venoms and Theranostic Applications, 1002 Tunis, Tunisia; University of Tunis El Manar, 1068 Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1068 Tunis, Tunisia
| | - Hichem Ben Jannet
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia.
| |
Collapse
|
14
|
Djemoui A, Naouri A, Ouahrani MR, Djemoui D, Lahcene S, Lahrech MB, Boukenna L, Albuquerque HM, Saher L, Rocha DH, Monteiro FL, Helguero LA, Bachari K, Talhi O, Silva AM. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
You J, Fu H, Zhao D, Hu T, Nie J, Wang T. Flavonol dyes with different substituents in photopolymerization. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112097] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
17
|
Zheng R, Feng F, Zhang Z, Fu J, Su Q, Zhang Y, Gu Q. Microwave-assisted efficient synthesis of 3-substituted bis-isoxazole ether bearing 2-chloro-3-pyridyl via 1,3-dipolar cycloaddition. Mol Divers 2019; 24:423-435. [PMID: 31309395 DOI: 10.1007/s11030-019-09973-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/03/2019] [Indexed: 12/01/2022]
Abstract
An efficient strategy for synthesizing of 3-substituted bis-isoxazole ether bearing 2-chloro-3-pyridyl under microwave radiation was reported. The reactive regioselectivity was improved by changing mainly the solvent and acid-binding agent. 3-(2-Chloropyridin-3-yl)-5-(((3-substituted phenyl isoxazol-5-yl)methoxy)methyl)isoxazoles were synthesized in 31-92% yields and were characterized by FT-IR, HRMS, 1H and 13C NMR spectroscopy. The single crystal of 3-(2-chloropyridin-3-yl)-5-(((3-(p-tolyl)isoxazol-5-yl)methoxy)methyl)isoxazole was obtained, and the structure of compound has also been determined by X-ray diffraction technique. Weak intra- and intermolecular C-H∙∙∙O interactions and a C-H∙∙∙π interaction link molecules into a three-dimensional network. The results showed that the synthesized compounds belonged to triclinic system, and their regioselectivity depended on the solvent and acid-binding agent. The merits of this method include the environmentally friendly, efficient, simple operation, and higher regional selectivity. An efficient synthesis of 3-substituted bis-isoxazole ethers was developed via 1,3-dipolar cycloaddition reaction starting from 3-substituted phenyl-5-((prop-2-yn-1-yloxy))methyl)isoxazoles and (Z)-2-chloro-N-hydroxynicotinimidoyl chloride using NaHCO3 as an acid-binding agent in THF solvent-dissolved trace water under catalyst-free microwave-assisted conditions.
Collapse
Affiliation(s)
- Ran Zheng
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Fan Feng
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Zhihui Zhang
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiaxu Fu
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Qing Su
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yumin Zhang
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiang Gu
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
18
|
Lv XH, Liu H, Ren ZL, Wang W, Tang F, Cao HQ. Design, synthesis and biological evaluation of novel flavone Mannich base derivatives as potential antibacterial agents. Mol Divers 2018; 23:299-306. [PMID: 30168050 DOI: 10.1007/s11030-018-9873-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/25/2018] [Indexed: 01/11/2023]
Abstract
A series of novel Mannich base derivatives of flavone containing benzylamine moiety was synthesized using the Mannich reaction. The results of antifungal activity are not ideal, but its antifungal effect has a certain increase compared to flavonoids. After that, four bacteria were used to test antibacterial experiments of these compounds; compound 5g (MIC = 0.5, 0.125 mg/L) showed significant inhibitory activity against Staphylococcus aureus and Salmonella gallinarum compared with novobiocin (MIC = 2, 0.25 mg/L). Compound 5s exhibited broad spectrum antibacterial activity (MIC = 1, 0.5, 2, 0.05 mg/L) against four bacteria. The selected compounds 5g and 5s exhibit potent inhibition against Topo II and Topo IV with IC50 values (0.25-16 mg/L). Molecular docking model showed that the compounds 5g and 5s can bind well to the target by interacting with amino acid residues. It will provide some valuable information for the commercial antibacterial agents.
Collapse
Affiliation(s)
- Xian-Hai Lv
- School of Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hao Liu
- School of Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zi-Li Ren
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Wei Wang
- School of Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Feng Tang
- International Center for Bamboo and Rattan, 8 Fu Tong East Street, Beijing, 100714, People's Republic of China.
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|