1
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
2
|
Doan NQH, Tran HN, Nguyen NTM, Pham TM, Nguyen QDK, Vu TT. Synthesis, Antimicrobial - Cytotoxic Evaluation, and Molecular Docking Studies of Quinolin-2-one Hydrazones Containing Nitrophenyl or Isonicotinoyl/Nicotinoyl Moiety. Chem Biodivers 2024; 21:e202401142. [PMID: 39032128 DOI: 10.1002/cbdv.202401142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
By applying the hybrid molecular strategy, in this study, we reported the synthesis of fifteen quinolin-2-one hydrazones containing nitrophenyl or nicotinonyl/isonicotinoyl moiety, followed by in vitro and in silico evaluations of their potential antimicrobial and anticancer activities. In vitro antimicrobial evaluation of the target compounds on seven pathogenic strains, applying the broth microdilution method, revealed that compound 4a demonstrated the most potential antifungal activity against C. albicans (MIC 512 μg mL-1) and C. krusei (MIC 128 μg mL-1). In vitro cytotoxic evaluation of the target compounds on three human cancer cell lines, employing the MTT method, suggested that compound 5c exhibited the most potential cytotoxicities against HepG2 (IC50 10.19 μM), A549 (IC50 20.43 μM), and MDA-MB-231 (IC50 16.82 μM) cells. Additionally, molecular docking studies were performed to investigate the binding characteristics of compounds 4a and 5c with fungal lanosterol 14α-demethylase and human topoisomerase I-II, respectively, thereby contributing to the elucidation of their in vitro antifungal and cytotoxic properties. Furthermore, compounds 4a and 5c, via SwissADME prediction, could exhibit favorable physicochemical and pharmacokinetic properties. In conclusion, this study provides valuable insights into the potential of quinolin-2-one hydrazones as promising candidates for the development of novel antimicrobial and anticancer agents in the future.
Collapse
Affiliation(s)
- Nam Q H Doan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Hoan N Tran
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Nhu T M Nguyen
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Thu M Pham
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Quyen D K Nguyen
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Thanh-Thao Vu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang Street, Ben Nghe Ward, District 1, Ho Chi Minh City, 70000, Vietnam
| |
Collapse
|
3
|
Munir R, Zaib S, Zia-ur-Rehman M, Javed H, Roohi A, Zaheer M, Fatima N, Bhat MA, Khan I. Exploration of morpholine-thiophene hybrid thiosemicarbazones for the treatment of ureolytic bacterial infections via targeting urease enzyme: Synthesis, biochemical screening and computational analysis. Front Chem 2024; 12:1403127. [PMID: 38855062 PMCID: PMC11157103 DOI: 10.3389/fchem.2024.1403127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
An important component of the pathogenicity of potentially pathogenic bacteria in humans is the urease enzyme. In order to avoid the detrimental impact of ureolytic bacterial infections, the inhibition of urease enzyme appears to be an appealing approach. Therefore, in the current study, morpholine-thiophene hybrid thiosemicarbazone derivatives (5a-i) were designed, synthesized and characterized through FTIR, 1H NMR, 13C NMR spectroscopy and mass spectrometry. A range of substituents including electron-rich, electron-deficient and inductively electron-withdrawing groups on the thiophene ring was successfully tolerated. The synthesized derivatives were evaluated in vitro for their potential to inhibit urease enzyme using the indophenol method. The majority of compounds were noticeably more potent than the conventional inhibitor, thiourea. The lead inhibitor, 2-(1-(5-chlorothiophen-2-yl)ethylidene)-N-(2-morpholinoethyl)hydrazinecarbothioamide (5g) inhibited the urease in an uncompetitive manner with an IC50 value of 3.80 ± 1.9 µM. The findings of the docking studies demonstrated that compound 5g has a strong affinity for the urease active site. Significant docking scores and efficient binding free energies were displayed by the lead inhibitor. Finally, the ADME properties of lead inhibitor (5g) suggested the druglikeness behavior with zero violation.
Collapse
Affiliation(s)
- Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | | | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ayesha Roohi
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Zaheer
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore, Pakistan
| | - Nabiha Fatima
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Lotha TN, Richa K, Sorhie V, Ketiyala, Nakro V, Imkongyanger, Ritse V, Rudithongru L, Namsa ND, Jamir L. Environmentally benign synthesis of unsymmetrical ureas and their evaluation as potential HIV-1 protease inhibitors via a computational approach. Mol Divers 2024; 28:749-763. [PMID: 36788191 DOI: 10.1007/s11030-023-10615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
The present work reports the cost-effective, high yielding and environmentally acceptable preparation of unsymmetrical ureas from thiocarbamate salts using sodium percarbonate as an oxidant. Efficacy of the unsymmetrical ureas as potential human immune deficiency virus (HIV-1) protease inhibitors has been evaluated via in silico approach. The results revealed interactions of the urea compounds at the active site of the enzyme with favorable binding affinities causing possible mutations hindering the functioning of the enzyme. Further computational assessment of IC50 using known references satisfactorily authenticated the inhibitory action of the selected compounds against HIV-1 protease. Added to the easy synthesis of the ureas following an environmentally benign protocol, this work may be a valuable addition to the ongoing search for drugs with better efficacy profiles and reduced toxicity against HIV.
Collapse
Affiliation(s)
- Tsenbeni N Lotha
- Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Kikoleho Richa
- Department of Chemistry, Nagaland University, Lumami, Nagaland, 798627, India
| | - Viphrezolie Sorhie
- Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Ketiyala
- Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vevosa Nakro
- Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Imkongyanger
- Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vimha Ritse
- Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Lemzila Rudithongru
- Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | - Latonglila Jamir
- Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India.
| |
Collapse
|
5
|
Tawfeek HN, Tawfeek AM, Bräse S, Nieger M, El-Sheref EM. Stereoselective synthesis and X-ray structure determination of novel 1,2-dihydroquinolinehydrazonopropanoate derivatives. Heliyon 2024; 10:e25248. [PMID: 38404815 PMCID: PMC10884343 DOI: 10.1016/j.heliyon.2024.e25248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
A novel series of 1,2-dihydroquinolinhydrazonopropanoate have been synthesized via a convenient aza-Michael addition reaction between hydrazinylquinolinones and ethyl propiolate in ethanol under refluxing temperature. The structures for all obtained products were confirmed with FTIR, NMR spectrums, as well as mass spectrometry. In addition, the monoclinic structure for compounds 8a, 8c, and 8d was also confirmed via X-ray crystallography analyses. The E-configuration for the obtained products was confirmed form the X-ray analysis. On the other hand, the crystal packing shows that the intermolecular and hydrogen bonds between atoms are parallel to the bc plan.
Collapse
Affiliation(s)
- Hendawy N. Tawfeek
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Ahmed M. Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, PO Box 55, A. I. Virtasen Aukio 1, 00014, Helsinki, Finland
| | - Essmat M. El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| |
Collapse
|
6
|
Islam M, Khan A, Khan M, Halim SA, Ullah S, Hussain J, Al-Harrasi A, Shafiq Z, Tasleem M, El-Gokha A. Synthesis and biological evaluation of 2-nitrocinnamaldehyde derived thiosemicarbazones as urease inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Design, synthesis and antimicrobial activity of novel quinoline-2-one hybrids as promising DNA gyrase and topoisomerase IV inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
X-ray Structures and Computational Studies of Two Bioactive 2-(Adamantane-1-carbonyl)- N-substituted Hydrazine-1-carbothioamides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238425. [PMID: 36500517 PMCID: PMC9741201 DOI: 10.3390/molecules27238425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Two biologically active adamantane-linked hydrazine-1-carbothioamide derivatives, namely 2-(adamantane-1-carbonyl)-N-(tert-butyl)hydrazine-1-carbothioamide) 1 and 2-(adamantane-1-carbonyl)-N-cyclohexylhydrazine-1-carbothioamide 2, have been synthesized. X-ray analysis was conducted to study the effect of the t-butyl and cyclohexyl moieties on the intermolecular interactions and conformation of the molecules in the solid state. X-ray analysis reveals that compound 1 exhibits folded conformation, whereas compound 2 adopts extended conformation. The Hirshfeld surface analysis indicates that the contributions of the major intercontacts involved in the stabilization of the crystal structures do not change much as a result of the t-butyl and cyclohexyl moieties. However, the presence and absence of these contacts is revealed by the 2D-fingerprint plots. The CLP-Pixel method was used to identify the energetically significant molecular dimers. These dimers are stabilized by different types of intermolecular interactions such as N-H···S, N-H···O, C-H···S, C-H···O, H-H bonding and C-H···π interactions. The strength of these interactions was quantified by using the QTAIM approach. The results suggest that N-H···O interaction is found to be stronger among other interactions. The in vitro assay suggests that both compounds 1 and 2 exhibit urease inhibition potential, and these compounds also display moderate antiproliferative activities. Molecular docking analysis shows the key interaction between urease enzyme and title compounds.
Collapse
|
9
|
El-Sheref EM, Tawfeek HN, Hassan AA, Bräse S, Elbastawesy MAI, Gomaa HAM, Mostafa YA, Youssif BGM. Synthesis of novel amidines via one-pot three component reactions: Selective topoisomerase I inhibitors with antiproliferative properties. Front Chem 2022; 10:1039176. [PMID: 36465858 PMCID: PMC9716094 DOI: 10.3389/fchem.2022.1039176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 03/26/2024] Open
Abstract
Novel series of amidines were synthesized via the interaction between alicyclic amines, cyclic ketones, and a highly electrophilic 4-azidoquinolin-2(1H)-ones without any catalyst or additive. All the obtained products were elucidated based on NMR spectroscopy, mass spectrometry, and elemental analysis. The reaction conditions were optimized using cyclohexanone (2), piperidine (3a), and 4-azido-quinolin-2(1H)-one (1a) under an air atmosphere. The new compounds 4a-l and 5a-c were tested for antiproliferative activity against four cancer cell lines using doxorubicin as a reference drug. The most potent derivatives were compounds 4b, 4d, 4e, 4i, and 5c, with GI50 ranging from 1.00 µM to 1.50 µM. Compound 5c was the most effective derivative against the four cancer cell lines, outperforming doxorubicin. The compounds 4b, 4d, 4e, 4i, and 5c were studied further as topoisomerase I and IIα inhibitors. The compounds tested showed selective inhibition of topo I over topo IIα. Finally, docking studies explain why these compounds prefer topo I over topo IIα.
Collapse
Affiliation(s)
| | - Hendawy N. Tawfeek
- Chemistry Department, Faculty of Science, Minia University, El Minia, Egypt
| | - Alaa A. Hassan
- Chemistry Department, Faculty of Science, Minia University, El Minia, Egypt
| | - S. Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Synthesis and Identification of New N, N-Disubstituted Thiourea, and Thiazolidinone Scaffolds Based on Quinolone Moiety as Urease Inhibitor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207126. [PMID: 36296723 PMCID: PMC9608620 DOI: 10.3390/molecules27207126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Synthesis of thiazolidinone based on quinolone moiety was established starting from 4-hydroxyquinol-2-ones. The strategy started with the reaction of ethyl bromoacetate with 4-hydroxyquinoline to give the corresponding ethyl oxoquinolinyl acetates, which reacted with hydrazine hydrate to afford the hydrazide derivatives. Subsequently, hydrazides reacted with isothiocyanate derivatives to give the corresponding N,N-disubstituted thioureas. Finally, on subjecting the N,N-disubstituted thioureas with dialkyl acetylenedicarboxylates, cyclization occurred, and thiazolidinone derivatives were obtained in good yields. The two series based on quinolone moiety, one containing N,N-disubstituted thioureas and the other containing thiazolidinone functionalities, were screened for their in vitro urease inhibition properties using thiourea and acetohydroxamic acid as standard inhibitors. The inhibition values of the synthesized thioureas and thiazolidinones exhibited moderate to good inhibitory effects. The structure-activity relationship revealed that N-methyl quinolonyl moiety exhibited a superior effect, since it was proved to be the most potent inhibitor in the present series achieving (IC50 = 1.83 ± 0.79 µM). The previous compound exhibited relatively much greater activity, being approximately 12-fold more potent than thiourea and acetohydroxamic acid as references. Molecular docking analysis showed a good protein-ligand interaction profile against the urease target (PDBID: 4UBP), emphasizing the electronic and geometric effect of N,N-disubstituted thiourea.
Collapse
|
11
|
Sadat-Ebrahimi SE, Bigdelou A, Sooreshjani RH, Montazer MN, Zomorodian K, Irajie C, Yahya-Meymandi A, Biglar M, Larijani B, Amanlou M, Iraji A, Mahdavi M. Novel phenylurea-pyridinium derivatives as potent urease inhibitors: Synthesis, in vitro, and in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Ferreira M, Munaretto LS, Gouvêa DP, Bortoluzzi AJ, Sa MM. Diversity‐Oriented Synthesis of 2‐Iminothiazolidines: Pushing the Boundaries of the Domino Nucleophilic Displacement/Intramolecular anti‐Michael Addition Process. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - Marcus M. Sa
- Universidade Federal de Santa Catarina Chemistry campus Trindade 88040-900 Florianopolis BRAZIL
| |
Collapse
|
13
|
Song WQ, Liu ML, Li SY, Xiao ZP. Recent Efforts in the Discovery of Urease Inhibitor Identifications. Curr Top Med Chem 2021; 22:95-107. [PMID: 34844543 DOI: 10.2174/1568026621666211129095441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
Urease is an attractive drug target for designing anti-infective agents against pathogens such as Helicobacter pylori, Proteus mirabilis, and Ureaplasma urealyticum. In the past century, hundreds of medicinal chemists focused their efforts on explorations of urease inhibitors. Despite the FDA's approval of acetohydroxamic acid as a urease inhibitor for the treatment of struvite nephrolithiasis and the widespread use of N-(n-butyl)thiophosphoric triamide as a soil urease inhibitor as nitrogen fertilizer synergists in agriculture, urease inhibitors with high potency and safety are urgently needed. Exploration of novel urease inhibitors has therefore become a hot research topic recently. Herein, inhibitors identified worldwide from 2016 to 2021 have been reviewed. They structurally belong to more than 20 classes of compounds such as urea/thioure analogues, hydroxamic acids, sulfonamides, metal complexes, and triazoles. Some inhibitors showed excellent potency with IC50 values lower than 10 nM, having 10000-fold higher potency than the positive control thiourea.
Collapse
Affiliation(s)
- Wan-Qin Song
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Mei-Ling Liu
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Su-Ya Li
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Zhu-Ping Xiao
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| |
Collapse
|
14
|
Design and Synthesis of (2- oxo-1,2-Dihydroquinolin-4-yl)-1,2,3-triazole Derivatives via Click Reaction: Potential Apoptotic Antiproliferative Agents. Molecules 2021; 26:molecules26226798. [PMID: 34833890 PMCID: PMC8620910 DOI: 10.3390/molecules26226798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3’-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50 = 1.2 ± 0.2 µM and 1.4 ± 0.2 µM against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining.
Collapse
|
15
|
Mostafa SM, Aly AA, Sayed SM, Raslan MA, Ahmed AE, Nafady A, Ishak EA, Shawky AM, Abdelhafez ESM. New Quinoline-2-one/thiazolium bromide Derivatives; Synthesis, Characterization and Mechanism of Formation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Fayed MAA, El-Behairy MF, Abdallah IA, Abdel-Bar HM, Elimam H, Mostafa A, Moatasim Y, Abouzid KAM, Elshaier YAMM. Structure- and Ligand-Based in silico Studies towards the Repurposing of Marine Bioactive Compounds to Target SARS-CoV-2. ARAB J CHEM 2021; 14:103092. [PMID: 34909063 PMCID: PMC7904452 DOI: 10.1016/j.arabjc.2021.103092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
This work was a structured virtual screening for marine bioactive compounds with reported antiviral activities which were subjected to structure-based studies against SARS-CoV-2 co-crystallized proteins. The molecular docking of marine bioactive compounds against the main protease (Mpro, PDB ID: 6lu7 and 6y2f), the spike glycoprotein (PDB ID: 6vsb), and the RNA polymerase (PDB ID: 6m71) of SARS-CoV-2 was performed. Ligand-based approach with the inclusion of rapid overlay chemical structures (ROCS) was also addressed in order to examine the probability of these marine compounds sharing relevance and druggability with the reported drugs. Among the examined marine library, the highest scores in different virtual screening aspects were displayed by compounds with flavonoids core, acyl indole, and pyrrole carboxamide alkaloids. Moreover, a complete overlay with the co-crystallized ligands of Mpro was revealed by sceptrin and debromo-sceptrin. Thalassoilin (A-B) which was found in the Red Sea exhibited the highest binding and similarity outcomes among all target proteins. These data highlight the importance of marine natural metabolites in regard to further studies for discovering new drugs to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Khaled A M Abouzid
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| |
Collapse
|
17
|
Allam AE, Assaf HK, Hassan HA, Shimizu K, Elshaier YAMM. An in silico perception for newly isolated flavonoids from peach fruit as privileged avenue for a countermeasure outbreak of COVID-19. RSC Adv 2020; 10:29983-29998. [PMID: 35518212 PMCID: PMC9056308 DOI: 10.1039/d0ra05265e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
3'-Hydroxy-4'-methoxy-chroman-7-O-β-d-glucopyranoside 4 was first isolated from a natural source, together with three known compounds, the ferulic acid heptyl ester 1, naringenin 2, and 4,2',4'-trihydroxy-6'-methoxychalcone-4'-O-β-d-glucopyranoside 3, which were isolated from peach [Prunus persica (L.) Batsch] fruits. These compounds were subjected to different virtual screening strategies in order to examine their activity to combat the COVID-19 outbreak. The study design composed of some major aspects: (a) docking with main protease (Mpro), (b) docking with spike protein, (c) 3D shape similarity study (Rapid Overlay Chemical Similarity-ROCS) to the clinically used drugs in COVID-19 patients, and finally, (d) the rule of five and the estimated pre-ADMT properties of the separated flavonoids. Docking study with Mpro of SARS-CoV-2 (PDB ID:6LU7, and 6Y2F) showed that compound 3, its aglycone part, and compound 4 have a strong binding mode to a protease receptor with key amino acids, especially Gln:166AA, and having a similar docking pose to co-crystalized ligands. Docking with the spike protein of SARS-CoV-2 illustrated that compounds 3 and 4 have a good binding affinity to PDB ID:6VSB through the formation of HBs with Asp:467A and Asn:422A. According to ROCS analysis, compounds 1, 3, and 4 displayed high similarities to drugs that prevent SARS-Co2 entry to the lung cells or block the inflammatory storm causing lung injury. Compounds 3 and 4 are good candidates for drug development especially because they showed predicted activity against SARS-CoV-2 through different mechanisms either by preventing genome replication or by blocking inflammatory storm that trigger lung injury. These compounds were isolated from peach fruit, and the study supports data and continues with the recommendation of peach fruits in controlling and managing COVID-19 cases.
Collapse
Affiliation(s)
- Ahmed E Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Hamdy K Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia City 61111 Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka 819-0395 Japan
| | - Yaseen A M M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City Menoufia Egypt
| |
Collapse
|