1
|
Zhang Y, Bai R, Du T, Wang Y, Zhou B, Zhou C, Zhou L. Design, synthesis, bioactivity and action mechanism of N-substituted N'-phenylpicolinohydrazides against phytopathogenic fungi. Mol Divers 2025; 29:2209-2226. [PMID: 39285119 DOI: 10.1007/s11030-024-10984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 05/16/2025]
Abstract
N'-phenylpicolinohydrazide has been proven to be a promising lead compound for research and development of novel fungicides for agriculture in our previous study. As our continuing research, in this study, a series of N-substituted derivatives of N'-phenylpicolinohydrazide were synthesized and explored for the inhibition activity on nine phytopathogenic fungi and action mechanism. The results found that eleven of the compounds had excellent antifungal activity with more than 80% inhibition rates at 50 µg/mL on part or most of the fungi, especially A. solani and P. piricola. Compounds 5i, 5j and 5k showed EC50 values of < 8.0 µg/mL against A. solani superior to positive control carbendazim (EC50 = 36.0 µg/mL) while 5p and 5q exhibited the highest activity with EC50 values of 2.72 and 2.80 µg/mL against P. piricola superior to positive control boscalid (EC50 > 50.0 µg/mL). Furthermore, 5k also showed significant protective effect against A. solani infection on tomatoes in a concentration-dependent manner. Action mechanism research showed that 5k was able to increase the intracellular ROS level, change both MMP and permeability of cell membrane and damage mycelial morphology. Molecular docking studies showed that 5k could bind into ubiquinone-binding region of succinate dehydrogenase by hydrogen bonds, π-cation, π-π stacked, π-alkyl, and alkyl interactions. Additionally, the antibacterial activity was also investigated. Thus, N-substituted derivatives of N'-phenylpicolinohydrazide were emerged as novel and highly promising antifungal molecular skeletons to develop new fungicides for crop protection.
Collapse
Affiliation(s)
- Yuhao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Environment and Life Sciences, Weinan Normal University, Weinan, 714000, Shaanxi, People's Republic of China
| | - Ruofei Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Tengyi Du
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yiwei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Bohang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an, 710043, Shaanxi, People's Republic of China
| | - Congwei Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Zeng LQ, Chen Q, Wei G, Chen W, Zhu XL, Yang GF. Comprehensive Overview of the Amide Linker Modification in the Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26027-26039. [PMID: 39540453 DOI: 10.1021/acs.jafc.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the most important classes of agrochemical fungicides. According to the data from FRAC, the resistance risk for SDHIs had reached up to medium and even to high. In general, the chemical structure of SDHIs mainly contained three fragments: an acid core, a hydrophobic tail, and an amide linker, corresponding to three modification directions for each fragment. Among them, amide linker modification (ALM) has become a research hotspot for the design of novel SDHIs fungicides in recent years. We presented here a detailed review on the ALM strategy in the past decade, and some of them had entered the market. According to their chemical structures, ALM strategy were classified into four parts: (1) linked aliphatic chain between amide bond and hydrophobic tail, (2) introducing substituents to replacing hydrogen atom in the amide bond, (3) reverse extending the amide linker, and (4) changed with other bioisosteres. Moreover, the structure-activity relationship and the interaction mechanism of ALM-SDHI with SDH were discussed. This review aims to provide a global perspective on research and development of novel SDHIs, as well as suggestions for food safety management.
Collapse
Affiliation(s)
- Ling-Qiang Zeng
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Qi Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Ge Wei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
3
|
Su Y, Zhang T, An X, Ma H, Wang M. Design, synthesis, antifungal activity and molecular docking of novel pyrazole-4-carboxamides containing tertiary alcohol and difluoromethyl moiety as potential succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:2032-2041. [PMID: 38105405 DOI: 10.1002/ps.7937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Resistance problems with the long-term and frequent use of existing fungicides, and the lack of structure diversity of traditional pyrazole-4-carboxamide succinate dehydrogenase inhibitors, it is highly required to design and develop new fungicides to address the resistance issue. RESULTS Different from previous pyrazole-4-carboxamide succinate dehydrogenase inhibitors by breaking the norm of difluoromethyl at the C-3 position of pyrazole and introducing a tertiary alcohol group at the C-3 position, 27 novel pyrazole-4-carboxamide derivatives were designed, synthesized and characterized by proton (1 H) nuclear magnetic resonance (NMR), carbon-13 (13 C) NMR, fluorine-19 (19 F) NMR and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The crystal structures of compounds A14 and C5 were analyzed by single crystal X-ray diffraction. Their in vitro antifungal activities were evaluated against phytopathogen Fusarium graminearum, Botrytis cinerea, Phytophthora capsica, Sclerotinia sclerotiorum, Thanatephorus cucumeris. The results displayed that most of them exhibited significant antifungal activities against S. sclerotiorum at 50 mg/L, the half maximal effective concentration (EC50 ) data of A8 and A14 were 3.96 and 2.52 mg/L, respectively. Their in vivo antifungal activities were evaluated against Pseudoperonospora cubensis, Puccinia sorghi Schw, Colletotrichum gloeosporioides, F. graminearum, Erysiphe graminis, Thanatephorus cucumeris, the control efficacies of A6, B3, C3, and C6 against E. graminis reached 100% at a concentration of 400 mg/L. The molecular docking results showed that the binding mode of the target compounds containing tertiary alcohols were similar to that of fluxapyroxad in succinate dehydrogenase. In addition, tertiary alcohols were involved in the formation of hydrogen bonds. CONCLUSION The excellent in vitro and in vivo inhibitory activities of novel pyrazole-4-carboxamide derivatives against succinate dehydrogenase were reported for the first time, and they could be used as the potential lead compounds. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanhao Su
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Tingting Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xinkun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Haoyun Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Mingan Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
5
|
Kula K, Łapczuk A, Sadowski M, Kras J, Zawadzińska K, Demchuk OM, Gaurav GK, Wróblewska A, Jasiński R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238409. [PMID: 36500503 PMCID: PMC9739753 DOI: 10.3390/molecules27238409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Experimental and theoretical studies on the reaction between (E)-3,3,3-trichloro-1-nitroprop-1-ene and N-(4-bromophenyl)-C-arylnitrylimine were performed. It was found that the title process unexpectedly led to 1-(4-bromophenyl)-3-phenyl-5-nitropyrazole instead of the expected Δ2-pyrazoline molecular system. This was the result of a unique CHCl3 elimination process. The observed mechanism of transformation was explained in the framework of the molecular electron density theory (MEDT). The theoretical results showed that both of the possible channels of [3 + 2] cycloaddition were favorable from a kinetic point of view, due to which the creation of 1-(4-bromophenyl)-3-aryl-4-tricholomethyl-5-nitro-Δ2-pyrazoline was more probable. On the other hand, according to the experimental data, the presented reactions occurred with full regioselectivity.
Collapse
Affiliation(s)
- Karolina Kula
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| | - Agnieszka Łapczuk
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| | - Mikołaj Sadowski
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Jowita Kras
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Karolina Zawadzińska
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Oleg M. Demchuk
- Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 616-69 Brno, Czech Republic
| | - Aneta Wróblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| |
Collapse
|
6
|
Wang Y, Kou S, Huo J, Sun S, Wang Y, Yang H, Zhao S, Tang L, Han L, Zhang J, Chen L. Design, Synthesis, and Evaluation of Novel 4-Chloropyrazole-Based Pyridines as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9327-9336. [PMID: 35856648 DOI: 10.1021/acs.jafc.2c02350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A rational molecular design approach was developed in our laboratory to guide the discovery of novel sterol biosynthesis inhibitors. Based on the application of bioactivities of heterocyclic rings and molecular docking targeting the sterol biosynthesis 14α-demethylase, a series of 4-chloropyrazole-based pyridine derivatives were rationally designed, synthesized, and characterized and their fungicidal activities were also evaluated. Bioassay results showed that 7e, 7f, and 7m exhibited commendable, diverse antifungal actions that are comparable to those of the positive controls imazalil and triadimefon. The active compounds' mode of action was further studied by microscopy observations, Q-PCR, and enzyme inhibition assay and discovered that target compounds affect fungal sterol biosynthesis via disturbing RcCYP51 enzyme system. These findings support that their fungicidal mode of action still targets the cytochrome P450-dependent 14α-demethylase as the molecular design did at first. The above results strongly suggest that our rational molecular design protocol is not only practical but also efficient.
Collapse
Affiliation(s)
- Ying Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yanen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Hongwei Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiyong Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- Biological Control Center of Plant Diseases and Plant Pests of Hebei Province, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
7
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
8
|
Sun S, Chen L, Huo J, Wang Y, Kou S, Yuan S, Fu Y, Zhang J. Discovery of Novel Pyrazole Amides as Potent Fungicide Candidates and Evaluation of Their Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3447-3457. [PMID: 35282681 DOI: 10.1021/acs.jafc.2c00092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A rational molecule design strategy based on scaffold hopping was applied to discover novel leads, and then a series of novel pyrazole amide derivatives were designed, synthesized, characterized, and evaluated for their antifungal activities. Bioassay results indicated that some target compounds such as S3, S12, and S26 showed good in vivo antifungal activities; among them, S26 exhibited commendable in vivo protective activity with an 89% inhibition rate against Botrytis cinerea on cucumber at 100 μg/mL that is comparable to positive controls boscalid, isopyrazam, and fluxapyroxad. Microscopy observations suggested that S26 affects the normal fungal growth. Fluorescence quenching analysis and SDH (succinate dehydrogenase) enzymatic inhibition studies validated that S26 may not be an SDH inhibitor. Based on induction of plant defense responses testing, S26 enhanced the accumulation of RBOH, WRKY6, WRKY30, PR1, and PAL defense-related genes expression and the defense-associated enzyme phenylalanine ammonia lyase (PAL) expression on cucumber. These findings support that S26 not only displayed direct fungicidal activity but also exhibited plant innate immunity stimulation activity, and it could be used as a promising plant defense-related fungicide candidate.
Collapse
Affiliation(s)
- Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ying Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shitao Yuan
- Agricultural Science and Education Center of Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yining Fu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- Biological Control Center of Plant Diseases and Plant Pests of Hebei Province, Baoding 071001, P. R. China
| |
Collapse
|
9
|
Luo B, Ning Y. Comprehensive Overview of Carboxamide Derivatives as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:957-975. [PMID: 35041423 DOI: 10.1021/acs.jafc.1c06654] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Up to now, a total of 24 succinate dehydrogenase inhibitors (SDHIs) fungicides have been commercialized, and SDHIs fungicides were also one of the most active fungicides developed in recent years. Carboxamide derivatives represented an important class of SDHIs with broad spectrum of antifungal activities. In this review, the development of carboxamide derivatives as SDHIs with great significances were summarized. In addition, the structure-activity relationships (SARs) of antifungal activities of carboxamide derivatives as SDHIs was also summarized based on the analysis of the structures of the commercial SDHIs and lead compounds. Moreover, the cause of resistance of SDHIs and some solutions were also introduced. Finally, the development trend of SDHIs fungicides was prospected. We hope this review will give a guide for the development of novel SDHIs fungicides in the future.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Yuli Ning
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| |
Collapse
|
10
|
Xiao L, Yu L, Li P, Chi J, Tang Z, Li J, Tan S, Wang X. Design, Synthesis, and Bioactivity Evaluation of New Thiochromanone Derivatives Containing a Carboxamide Moiety. Molecules 2021; 26:4391. [PMID: 34361545 PMCID: PMC8348251 DOI: 10.3390/molecules26154391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, using the botanical active component thiochromanone as the lead compound, a total of 32 new thiochromanone derivatives containing a carboxamide moiety were designed and synthesized and their in vitro antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicolaby (Xoc), and Xanthomonas axonopodis pv. citri (Xac) were determined, as well as their in vitro antifungal activities against Botryosphaeria dothidea (B. dothidea), Phomopsis sp., and Botrytis cinerea (B. cinerea). Bioassay results demonstrated that some of the target compounds exhibited moderate to good in vitro antibacterial and antifungal activities. In particular, compound 4e revealed excellent in vitro antibacterial activity against Xoo, Xoc, and Xac, and its EC50 values of 15, 19, and 23 μg/mL, respectively, were superior to those of Bismerthiazol and Thiodiazole copper. Meanwhile, compound 3b revealed moderate in vitro antifungal activity against B. dothidea at 50 μg/mL, and the inhibition rate reached 88%, which was even better than that of Pyrimethanil, however, lower than that of Carbendazim. To the best of our knowledge, this is the first report on the antibacterial and antifungal activities of this series of novel thiochromanone derivatives containing a carboxamide moiety.
Collapse
Affiliation(s)
- Lingling Xiao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.X.); (L.Y.); (J.C.); (Z.T.); (J.L.); (X.W.)
| | - Lu Yu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.X.); (L.Y.); (J.C.); (Z.T.); (J.L.); (X.W.)
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.X.); (L.Y.); (J.C.); (Z.T.); (J.L.); (X.W.)
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine/Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Kaili University, Kaili 556011, China
| | - Jiyan Chi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.X.); (L.Y.); (J.C.); (Z.T.); (J.L.); (X.W.)
| | - Zhangfei Tang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.X.); (L.Y.); (J.C.); (Z.T.); (J.L.); (X.W.)
| | - Jie Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.X.); (L.Y.); (J.C.); (Z.T.); (J.L.); (X.W.)
| | - Shuming Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.X.); (L.Y.); (J.C.); (Z.T.); (J.L.); (X.W.)
| | - Xiaodan Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.X.); (L.Y.); (J.C.); (Z.T.); (J.L.); (X.W.)
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Alswah M, Ahmed HEA, Al-Karmalamy AA, Abulkhair HS. The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02838c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resistance of pathogenic microbes to currently available antimicrobial agents has been considered a global alarming concern.
Collapse
Affiliation(s)
- Mohamed H. El-Shershaby
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Kamal M. El-Gamal
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ahmed A. Al-Karmalamy
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Horus University - Egypt
- New Damietta
- Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| |
Collapse
|