1
|
Hancharova M, Halicka-Stępień K, Dupla A, Lesiak A, Sołoducho J, Cabaj J. Antimicrobial activity of metal-based nanoparticles: a mini-review. Biometals 2024; 37:773-801. [PMID: 38286956 DOI: 10.1007/s10534-023-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.
Collapse
Affiliation(s)
- Marharyta Hancharova
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kinga Halicka-Stępień
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Dupla
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
- Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Jadwiga Sołoducho
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
2
|
Li J, Lin Y, Liu B, Zhou X, Chen W, Shen G. Alkylated Sulfonium Modification of Low Molecular Weight Polyethylenimine to Form Lipopolymers as Gene Vectors. ACS OMEGA 2024; 9:2339-2349. [PMID: 38250374 PMCID: PMC10795143 DOI: 10.1021/acsomega.3c06255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Hydrophobic modification of low molecular weight polyethylenimine (PEI) is an efficient method to form ideal gene-transfer carriers. Sulfonium-a combination of three different functional groups, was conjugated onto PEI 1.8k at a conjugation ratio of 1:0.1 to form a series of sulfonium PEI (SPs). These SPs were hydrophobically modified and characterized by Fourier transform infrared and HNMR. DNA-condensing abilities of SPs were tested with gel retardation experiment, and their cytotoxicity was evaluated via the MTT assay. The particle size and zeta potential of SP/DNA nanoparticles were measured and evaluated for cellular uptake and transfection ability on HepG2 cell line. The results showed that the sulfonium moiety was attached to PEI 1.8k with a high yield at a conjugation ratio of 1:0.1. SPs containing longer alkyl chains condensed DNA completely at an SP/DNA weight ratio of 2:1. The formed nanoparticle size was in the range of 168-265 nm, and the zeta potential was +16-45 mV. The IC50 values of SPs were 6.5-43.2 μg/mL. The cytotoxicity of SPs increased as the hydrophobic chain got longer. SP/DNA showed much stronger cellular uptakes than PEI 25k; however, pure SPs presented almost no gene transfection on cells. Heparin release experiment showed that SP's strong binding of DNA resulted in low release of DNA and thus hindered the gene transfection process. By mixing SP with PEI 1.8k, the mixture presented adjustable DNA binding and releasing. The mixture formed by 67% SP and 33% PEI 1.8k showed strong gene transfection. In conclusion, sulfonium is an effective linkage to carry hydrophobic groups to adjust cell compatibilities and gene transfection capabilities of PEI.
Collapse
Affiliation(s)
- Jing Li
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang
Provincial Key Laboratory of Environmental Microbiology and Recycling
of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Key
Laboratory of Low-carbon Green Agriculture in Northeastern China,
Ministry of Agriculture and Rural Affairs P. R. China, College of
Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing 163319, China
| | - Yue Lin
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Bingling Liu
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xiaodong Zhou
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Wenyang Chen
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Guinan Shen
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang
Provincial Key Laboratory of Environmental Microbiology and Recycling
of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Key
Laboratory of Low-carbon Green Agriculture in Northeastern China,
Ministry of Agriculture and Rural Affairs P. R. China, College of
Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
3
|
Aziz DM, Hassan SA, Mamand DM, Qurbani K. New Azo-Azomethine Derivatives: Synthesis, Characterization, Computational, Solvatochromic UV‒Vis Absorption and Antibacterial Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Kommula D, Chintakunta PK, Garikapati K, Murty MSR. Nano-CuFe 2O 3-catalyzed green synthesis of novel quinazolinone-tetrazole hybrids as anti-cancer agents. Mol Divers 2023; 27:425-441. [PMID: 35503155 DOI: 10.1007/s11030-022-10432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
A novel green protocol has been developed for the synthesis of quinazolinone-tetrazole conjugates (7a-g, 8a-g and 9a-g) using recyclable nano-CuFe2O3 catalyst in water. Initially, 2-mercapto-3-substituted phenethylquinazolin-4(3H)-one (5a-c) was prepared by using nano-CuFe2O3 catalyst in water. Then, compounds (5a-c) were reacted with 1-bromo-3-chloropropane under nano-CuFe2O3 catalyst in water solvent to give S-alkylated quinazolinone core intermediate (6a-c), which was subsequently reacted with 1-substituted-1H-tetrazole-5-thiol (2a-g) by employing the similar reaction conditions to afford the final target compounds. The regioselective formation of C-S bond was unambiguously confirmed by single-crystal X-ray diffraction. The anti-cancer activity of the derivatives on various cancer cell lines such as SIHA, MD-AMB-231 and HepG2 was evaluated. Remarkably, compounds, 7f, 8f, 9a, 9d and 9f, showed potent activity in MD-AMB-231 cancer cell line (IC50: 9.13-10.3 µM), while the same derivatives showed significant potent activity in SiHa and HepG2 cancer cell lines (IC50: 17.46-27.0 µM). Most significantly, compound 7o (IC50: 8.15 µM) showed potent activity, compared to the drug etoposide (IC50: 18.11 µM) against MD-AMB-231 cell line. Flow cytometry analysis revealed that compounds 7f, 8f, 9a, 9d and 9f arrested the cell growth in the G1 phase in MD-AMB-231 cell line.
Collapse
Affiliation(s)
- Dileep Kommula
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| | - Praveen Kumar Chintakunta
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - M S R Murty
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
5
|
Darakshan, Parvin T. One-pot multicomponent synthesis of benzophenazine tethered tetrahydropyridopyrimidine derivatives. Mol Divers 2023; 27:313-322. [PMID: 35460459 DOI: 10.1007/s11030-022-10426-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023]
Abstract
A simple, facile, and efficient green methodology has been developed for the synthesis of benzophenazine tethered tetrahydropyridopyrimidine derivatives by the one-pot four-component reaction of cinnamaldehyde/crotonaldehyde, 2-hydroxy-1,4-naphthoquinone, 1,3-dimethyl-6-amino uracil, and o-phenylenediamine in ethanol medium under reflux conditions using p-TSA as a catalyst. In this environmentally benign methodology, three C-N and two C-C bonds are formed in one pot. The hybrid products have three bioactive moieties such as benzophenazine, tetrahydropyridine, and pyrimidine. Operational simplicity, metal-free conditions, wide substrate scope, readily available starting materials, moderate to good yields of the desired products, presence of pharmaceutically active moieties, and easy purification process are the notable features of this methodology.
Collapse
Affiliation(s)
- Darakshan
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna, 800 005, India
| | - Tasneem Parvin
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna, 800 005, India.
| |
Collapse
|
6
|
Chowdhary S, Raza A, Seboletswe P, Cele N, Sharma AK, Singh P, Kumar V. Cu-promoted synthesis of Indolo[2,3-b]quinoxaline-Mannich adducts via three-component reaction and their anti-proliferative evaluation on colorectal and ovarian cancer cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Biosynthesis of Palladium Nanoparticles from Moringa oleifera Leaf Extract Supported on Activated Bentonite Clay and Its Efficacy Towards Suzuki–Miyaura Coupling and Oxidation Reaction. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Kohzadi H, Soleiman-Beigi M. Progress on the natural asphalt applications as a new class of carbonious heterogeneous support; synthesis of Na[Pd-NAS] and study of its catalytic activity in the formation of carbon-carbon bonds. Mol Divers 2021; 26:1957-1967. [PMID: 34505952 DOI: 10.1007/s11030-021-10306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
In continuation of our recent research on introducing natural asphalt as a new carbonious, eco-friendly, highly economical support, and also in addition to our plan to develop its application in heterogeneous catalyst chemistry, palladium grafted on natural asphalt sulfonate (Na [Pd-NAS]), was prepared and characterized using usual spectroscopy techniques. This new carbon-based heterogeneous nanocatalyst was successfully applied as an efficient catalyst for the Suzuki, Stille and Heck reactions under mild and sustainable conditions. The reaction of various aryl halides with triphenyltin chloride, phenylboronic acid or n-butyl acrylate provided the corresponding products with moderate to good yields. Na [Pd-NAS] was characterized by FT-IR spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, inductively coupled plasma, thermogravimetric analysis techniques and N2 adsorption-desorption measurement. SEM image illustrated that the Na [Pd-NAS] has vermicular and flaky shapes. According to the IUPAC classiication, the sample exhibited IV type curves. More importantly, this ligand-free catalyst is stable under the reaction conditions. Besides, the catalyst was separated by simple filtration and reused for the several times without any deterioration in its activity. In this research we report Na[Pd-NAS] as a versatile and reusable nanocatalyst for the C-C coupling reactions.
Collapse
Affiliation(s)
- Homa Kohzadi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| | - Mohammad Soleiman-Beigi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran.
| |
Collapse
|