1
|
Šubarić D, Rastija V, Karnaš Babić M, Agić D, Majić I. Structural Features of Coumarin-1,2,4-Triazole Hybrids Important for Insecticidal Effects Against Drosophila melanogaster and Orius laevigatus (Fieber). Molecules 2025; 30:1662. [PMID: 40333563 PMCID: PMC12029422 DOI: 10.3390/molecules30081662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
Although the present use of pesticides in plant protection has limited the occurrence and development of plant diseases and pests, resistance to pesticides and their environmental and health hazards indicates an urgent need for new active ingredients in plant protection products. Recently synthesized coumarin-1,2,4-triazole hybrid compounds have been proven effective against plant pathogenic fungi and safe for soil-beneficial bacteria. Drosophila melanogaster, the common fruit fly, has been used as a model organism for scientific research. Additionally, it is considered a pest since it damages fruits and serves as a carrier for various plant diseases. On the contrary, Orius laevigatus is a beneficial true bug that biologically controls harmful arthropods in agricultural production. In the present study, we performed an adulticidal bioassay against D. melanogaster and O. laevigatus using coumarin-1,2,4-triazole hybrids. Quantitative structure-activity relationship studies (QSARs) and in silico ecotoxicity evaluation elucidated the structural features underlying the compounds' insecticidal activity. The derivative of 4-methylcoumarin-1,2,4-triazole with a 3-bromophenyl group showed great insecticidal potential. A molecular docking study indicated that the most active compound probably binds to glutamate-gated chloride channels.
Collapse
Affiliation(s)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (D.Š.); (M.K.B.); (D.A.); (I.M.)
| | | | | | | |
Collapse
|
2
|
Gulati HK, Khanna A, Kumar N, Sharma A, Rupali, Jyoti, Singh J, Bhagat K, Bedi PMS. Triazole derivatives as potential xanthine oxidase inhibitors: Design, enzyme inhibition potential, and docking studies. Arch Pharm (Weinheim) 2024; 357:e2300296. [PMID: 38196114 DOI: 10.1002/ardp.202300296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024]
Abstract
Considerable ingenuity has been shown in the recent years in the discovery of novel xanthine oxidase (XO) inhibitors that fall outside the purine scaffold. The triazole nucleus has been the cornerstone for the development of many enzyme inhibitors for the clinical management of several diseases, where hyperuricemia is one of them. Here, we give a critical overview of significant research on triazole-based XO inhibitors, with respect to their design, synthesis, inhibition potential, toxicity, and docking studies, done till now. Based on these literature findings, we can expect a burst of modifications on triazole-based scaffolds in the near future by targeting XO, which will treat hyperuricemics, that is, painful conditions like gout that at present are hard to deal with.
Collapse
Affiliation(s)
- Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- Dasmesh College of Pharmacy, Faridkot, Punjab, India
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rupali
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jatindervir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | | |
Collapse
|
3
|
Xu R, Han X, Lou Y, Chang M, Kong Y, Gu S, Gao Y, Shang S, Song Z, Song J, Li J. Discovery of Potential Rosin-Based Triazole Antifungal Candidates to Control Valsa mali for Sustainable Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4630-4638. [PMID: 38407939 DOI: 10.1021/acs.jafc.3c07628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To investigate the potential application value of dehydroabietic acid, 27 novel dehydroabietyl-1,2,4-triazole-5-thioether-based derivatives were designed and characterized by IR, 1H NMR, 13C NMR, and LC-MS. Their antifungal activities were evaluated against five plant fungi, namely, Valsa mali, Colletotrichum orbiculare, Fusarium graminearum, Sclerotinia sclerotiorum, and Gaeumannomyces graminis; the results showed that compound 5h-1 (Co. 5h-1) exhibited a considerable inhibitory effect against V. mali. Moreover, in vivo experiments indicated that Co. 5h-1 had a certain protective effect on apple branches. The preliminary structure-activity relationship analysis suggested that the electron-withdrawing group on the benzyl group was significantly better than that of other substituent derivatives. Through electron microscopy analysis, it was found that Co. 5h-1 hindered the growth of mycelia, damaged their cell structure, and caused the large accumulation of reactive oxygen species (ROS). Preliminary research on the mode of action indicated that Co. 5h-1 could affect the activity of CAT by increasing the α-helix (0.790%), decreasing the β-sheet (0.170%), which led to the accumulation of ROS. In addition, Co. 5h-1 also affected the activity of CYP51, hindered the biosynthesis of ergosterol, and increased cell membrane permeability. Overall, this above research proposed that Co. 5h-1 can be a novel leading structure for development of a fungicide agent.
Collapse
Affiliation(s)
- Renle Xu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xu Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Meiyue Chang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yue Kong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
4
|
Zhou S, Hou X, Li L, Guo L, Wang H, Mao L, Shi L, Yuan M. Discovery of dolutegravir-1,2,3-triazole derivatives against prostate cancer via inducing DNA damage. Bioorg Chem 2023; 141:106926. [PMID: 37871389 DOI: 10.1016/j.bioorg.2023.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer among men, causing a huge number of deaths each year. Traditional chemotherapy for PCa mostly focused on targeting androgen receptors. However, some of the patients would develop resistance to hormonal therapy. In these cases, it is suggested for these patients to administer treatments in combination with other chemotherapeutics. Current chemotherapeutics for metastatic castration-resistant PCa could hardly reach satisfying effects, therefore it is crucial to explore novel agents with low cytotoxicity. Herein, a common drug against the human immunodeficiency virus (HIV), the dolutegravir (DTG) was modified to become a series of dolutegravir-1,2,3-triazole derivatives. Among these compounds, the 4d and 4q derivatives were verified with high anti-tumor efficiency, suppressing the proliferation of the prostate cancer cells PC3 and DU145. These compounds function by binding to the poly (adenosine diphosphate-ribose) polymerase (PARP), inactivating the PARP and inducing DNA damage in cancer cells. It is noteworthy that the 4d and 4q derivatives showed almost no impact on normal cells and mice. Thereby, the results reveal that these dolutegravir-1,2,3-triazole compounds are potential chemotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Shuyi Zhou
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xixi Hou
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ling Li
- Department of Pharmacology, the Eighth Affiliated Hospital, Sun Yat-sen University, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - LiHao Guo
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huili Wang
- University of North Carolina Hospitals, 101 Manning Dr, Chapel Hill, Orange County, NC27599, USA
| | - Longfei Mao
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China; College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471003, China.
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Miaomiao Yuan
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
5
|
Xu R, Chen K, Han X, Lou Y, Gu S, Gao Y, Shang S, Song Z, Song J, Li J. Design and Synthesis of Antifungal Candidates Containing Triazole Scaffold from Natural Rosin against Valsa mali for Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37318049 DOI: 10.1021/acs.jafc.3c02002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two series of dehydroabietyl-1,2,4-triazole-4-Schiff-based derivatives were synthesized from rosin to control plant fungal diseases. In vitro evaluation and screening of the antifungal activity were performed using Valsa mali, Colletotrichum orbiculare, Fusarium graminearum, Sclerotinia sclerotiorum, and Gaeumannomyces graminis. Compound 3f showed excellent fungicidal activity against V. mali (EC50 = 0.537 μg/mL), which was significantly more effective than the positive control fluconazole (EC50 = 4.707 μg/mL). Compound 3f also had a considerable protective effect against V. mali (61.57%-92.16%), which was slightly lower than that of fluconazole (85.17-100%) at 25-100 μg/mL. Through physiological and biochemical analyses, the preliminary mode of action of compound 3f against V. mali was explored. Ultrastructural observation of mycelia showed that compound 3f hindered the growth of the mycelium and destroyed the ultrastructure of V. mali seriously. Conductivity analysis and laser scanning confocal microscope staining showed that compound 3f changed cell-membrane permeability and caused accumulation of reactive oxygen species. The enzyme activity results showed that compound 3f significantly inhibited the activity of CYP51 (59.70%), SOD (76.9%), and CAT (67.86%). Molecular docking identified strong interaction energy between compound 3f and crystal structures of CYP51 (-11.18 kcal/mol), SOD (-9.25 kcal/mol), and CAT (-8.79 kcal/mol). These results provide guidance for the discovery of natural product-based antifungal pesticide candidates.
Collapse
Affiliation(s)
- Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Kun Chen
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
6
|
Zhao F, Tang X, Huang J, Li J, Xiao Y, Qin Z. Design, synthesis, and insecticidal activity of a novel series of flupyrimin analogs bearing 1-aryl-1H-pyrazol-4-yl subunits. Front Chem 2022; 10:1019573. [PMID: 36262338 PMCID: PMC9574050 DOI: 10.3389/fchem.2022.1019573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
To discover new potential insecticides to protect agricultural crops from damage, a series of novel flupyrimin derivatives containing an arylpyrazole core were designed and synthesized. Their structures were confirmed by 1H NMR, 13C NMR, and HRMS. Bioassays indicated that the 31 compounds synthesized possessed excellent insecticidal activity against Plutella xylostella. Among these target compounds, the lethality of A3, B1-B6, D4, and D6 reached 100% at 400 μg/ml. Moreover, when the concentration dropped to 25 μg/ml, the insecticidal activities against the Plutella xylostella for compounds B2, B3, and B4 still reached more than 70%. The structure–activity relationship of the Plutella xylostella was discussed. The density functional theory analysis of flupyrimin and B4 was carried out to support the abovementioned structure–activity relationship. The possible binding modes between receptor and active groups in title compounds were also verified by docking simulation. These results provided new ideas for the development of these novel candidate insecticides in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaohai Qin
- *Correspondence: Jiaxing Huang, ; Zhaohai Qin,
| |
Collapse
|