1
|
Sharma V, Vats L, Giovannuzzi S, Mohan B, Supuran CT, Sharma PK. In-vitro and in-silico investigations of SLC-0111 hydrazinyl analogs as human carbonic anhydrase I, II, IX, and XII inhibitors. Arch Pharm (Weinheim) 2024; 357:e2400157. [PMID: 38713910 DOI: 10.1002/ardp.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Two novel series of hydrazinyl-based benzenesulfonamides 9a-j and 10a-j were designed and synthesized using SLC-0111 as the lead molecule. The newly synthesized compounds were evaluated for their inhibitory activity against four different human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. Both the series reported here were practically inactive against the off-target isozyme hCA I. Notably, derivative 10a exhibited superior potency (Ki of 10.2 nM) than acetazolamide (AAZ) against the cytosolic isoform hCA II. The hCA IX and XII isoforms implicated in tumor progression were effectively inhibited with Kis in the low nanomolar range of 20.5-176.6 nM and 6.0-127.5 nM, respectively. Compound 9g emerged as the most potent and selective hCA IX and XII inhibitor with Ki of 20.5 nM and SI of 200.1, and Ki of 6.0 nM and SI of 683.7, respectively, over hCA I. Furthermore, six compounds (9a, 9h, 10a, 10g, 10i, and 10j) exhibited significant inhibition toward hCA IX (Kis = 27.0, 41.1, 27.4, 25.9, 40.7, and 30.8 nM) relative to AAZ and SLC-0111 (Kis = 25.0 and 45.0 nM, respectively). These findings underscore the potential of these derivatives as potent and selective inhibitors of hCA IX and XII over the off-target hCA I and II.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, Haryana, India
| | - Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Central University of Haryana, Mahendragarh, India
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
2
|
Sulieman AME, Abdallah EM, Alanazi NA, Idriss H, Adnan M, Jamal A, Shommo SAM, Snoussi M. Bioactive profiling of Rumex vesicarius L. from the Hail region of Saudi Arabia: a study on its phytochemical and elemental analysis, antibiofilm, antibacterial, antioxidant properties, and molecular docking analysis. Front Microbiol 2024; 15:1421143. [PMID: 39135876 PMCID: PMC11317419 DOI: 10.3389/fmicb.2024.1421143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Background Rumex vesicarius is a wild leafy plant belonging to the family Polygonaceae, renowned for its therapeutic benefits. The genus Rumex comprises approximately 150 species distributed globally. Objective The study aimed to investigate the biological activities of R. vesicarius using in vitro and in silico methods. Methods Rumex vesicarius was collected from the mountains in Hail and extracted with methanol. The phytochemical composition was qualitatively determined using colorimetric detection methods. Additional analyses included elemental analysis, in silico docking, antioxidant, antibacterial, and anti-biofilm properties. Results The extract contained various classes of phytochemicals, including flavonoids, phenolics, tannins, terpenes, and saponins. Sixteen constituents were identified through molecular docking, revealing inhibition against the filamentous temperature-sensitive protein Z (FtsZ), a crucial factor in bacterial cell division. Six compounds exhibited low binding scores ranging from -8.3 to -5.0 kcal/mol, indicating efficient interaction at the active site. Elemental analysis identified 15 elements, with potassium being the most abundant, followed by calcium, aluminum, silicon, iron, phosphorus, sulfur, magnesium, titanium, strontium, zinc, manganese, bromine, and chromium. Antioxidant analysis revealed significant properties at lower concentrations compared to ascorbic acid, butylated hydroxytoluene, and β-carotene. Antibacterial analysis demonstrated inhibitory effects on Bacillus subtilis MTCC121 and Pseudomonas aeruginosa MTCC 741, with inhibition zones of 13.67 ± 1.0 mm and 11.50 ± 1.0 mm, respectively. The MIC and MBC values ranged from 250 to 500 μg/mL. R. vesicarius also exhibited anti-biofilm activity. Conclusion Wild-grown R. vesicarius from the mountains of Hail is rich in bioactive phytochemicals and essential minerals, exhibiting notable antioxidant and antibacterial properties.
Collapse
Affiliation(s)
| | - Emad M. Abdallah
- Department of Biology, College of Science, Qassim University, Qassim, Saudi Arabia
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Naimah Asid Alanazi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Hajo Idriss
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
3
|
Singh G, Shankar G, Panda SR, Kumar S, Rai S, Verma H, Kumar P, Nayak PK, Naidu VGM, Srikrishna S, Kumar S, Modi G. Design, Synthesis, and Biological Evaluation of Ferulic Acid Template-Based Novel Multifunctional Ligands Targeting NLRP3 Inflammasome for the Management of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1388-1414. [PMID: 38525886 DOI: 10.1021/acschemneuro.3c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aβ and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on EJMC-4e were caried out to improve its multifunctional properties. The rigorous medicinal efforts led to the development of 12o, which displayed a 15-fold enhancement in antioxidant properties and a 2-fold increase in the activity against AChE and BChE over EJMC-4e. Molecular docking and dynamics studies revealed the binding sites and stability of the complex of 12o with AChE and BChE. The PAMPA-BBB assay clearly demonstrated that 12o can easily cross the blood-brain barrier. Interestingly, 12o also expresses promising metal chelation activity, while EJMC-4e was found to be devoid of this property. Further, 12o inhibited metal-induced or self Aβ1-42 aggregation. Observing the neuroprotection ability of 12o against H2O2-induced oxidative stress in the PC-12 cell line is noteworthy. Furthermore, 12o also inhibited NLRP3 inflammasome activation and attenuated mitochondrial-induced ROS and MMP damage caused by LPS and ATP in HMC-3 cells. In addition, 12o is able to effectively reduce mitochondrial and cellular oxidative stress in the AD Drosophila model. Finally, 12o could reverse memory impairment in the scopolamine-induced AD mice model, as evident through in vivo and ex vivo studies. These findings suggest that this compound may act as a promising candidate for further improvement in the management of AD.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Himanshu Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
4
|
Fatima B, Saleem F, Salar U, Chigurupati S, Felemban SG, Ul-Haq Z, Tariq SS, Almahmoud SA, Taha M, Shah STA, Khan KM. Multitargeted inhibition of key enzymes associated with diabetes and Alzheimer's disease by 1,3,4-oxadiazole derivatives: Synthesis, in vitro screening, and computational studies. Arch Pharm (Weinheim) 2023; 356:e2300384. [PMID: 37806747 DOI: 10.1002/ardp.202300384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
A library of 22 derivatives of 1,3,4-oxadiazole-2-thiol was synthesized, structurally characterized, and assessed for its potential to inhibit α-amylase, α-glucosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and antioxidant activities. Most of the tested compounds demonstrated good to moderate inhibition potential; however, their activity was lower than that of the standard acarbose. Significantly, compound 3f exhibited the highest inhibition potential against α-glucosidase and α-amylase enzymes, with IC50 values of 18.52 ± 0.09 and 20.25 ± 1.05 µM, respectively, in comparison to the standard acarbose (12.29 ± 0.26; 15.98 ± 0.14 µM). Compounds also demonstrated varying degrees of inhibitory potential against AChE (IC50 = 9.25 ± 0.19 to 36.15 ± 0.12 µM) and BChE (IC50 = 10.06 ± 0.43 to 35.13 ± 0.12 µM) enzymes compared to the standard donepezil (IC50 = 2.01 ± 0.12; 3.12 ± 0.06 µM), as well as DPPH (IC50 = 20.98 ± 0.06 to 52.83 ± 0.12 µM) and ABTS radical scavenging activities (IC50 = 22.29 ± 0.18 to 47.98 ± 0.03 µM) in comparison to the standard ascorbic acid (IC50 = 18.12 ± 0.15; 19.19 ± 0.72). The kinetic investigations have demonstrated that the compounds exhibit competitive-type inhibition for α-amylase, noncompetitive-type inhibition for α-glucosidase and AChE, and mixed-type inhibition for BChE. Additionally, a molecular docking study was performed on all synthetic oxadiazoles to explore the interaction details of these compounds with the active sites of the enzymes.
Collapse
Affiliation(s)
- Bibi Fatima
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Shatha G Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syeda S Tariq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Syed T A Shah
- Department of Education, Sukkur IBA University, Sukkur, Pakistan
| | - Khalid M Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Hussain R, Rehman W, Rahim F, Mahmoud AM, Alanazi MM, Khan S, Rasheed L, Khan I. Synthetic transformation of 6-Fluoroimidazo[1,2-a]Pyridine-3-carbaldehyde into 6-Fluoroimidazo[1,2-a]Pyridine-Oxazole Derivatives: In vitro urease inhibition and in silico study. Saudi Pharm J 2023; 31:101667. [PMID: 37448838 PMCID: PMC10336670 DOI: 10.1016/j.jsps.2023.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/27/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose Ulcer is a serious disease that is caused due to different bacteria and over usage of various NSAIDs which caused to reduce the defensive system of stomach. Therefore, some novel series are needed to overcome these issues. Methods Oxazole-based imidazopyridine scaffolds (4a-p) were designed and synthesized by two step reaction protocol and then subjected to urease inhibition profile (in vitro). All the newly afforded analogs (4a-p) were found potent and demonstrated moderate to significant inhibition profile. Results Particularly, the analogs 4i (IC50 = 5.68 ± 1.66 μM), 4o (IC50 = 7.11 ± 1.24 μM), 4 g (IC50 = 9.41 ± 1.19 μM) and 4 h (IC50 = 10.45 ± 2.57 μM) were identified to be more potent than standard thiourea drug (IC50 = 21.37 ± 1.76 μM). Additionally, the variety of spectroscopic tools such as 1H NMR, 13C NMR and HREI-MS analysis were employed to confirm the precise structures of all the newly afforded analogs. Discussion The structure-activity relationship (SAR) studies showed that analogs possess the substitution either capable of furnishing strong HB like -OH or had strong EW nature such as -CF3 & -NO2 groups displayed superior inhibitory potentials than the standard thiourea drug. A good PLI (protein-ligand interaction) profile was shown by most active analogs when subjected to molecular study against corresponding target with key significant interactions such as pi-pi stacking, pi-pi T shaped and hydrogen bonding.
Collapse
Affiliation(s)
- Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Liaqat Rasheed
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Imran Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| |
Collapse
|
6
|
Bostancı HE, Çevik UA, Kapavarapu R, Güldiken YC, Inan ZDŞ, Güler ÖÖ, Uysal TK, Uytun A, Çetin FN, Özkay Y, Kaplancıklı ZA. Synthesis, biological evaluation and in silico studies of novel thiadiazole-hydrazone derivatives for carbonic anhydrase inhibitory and anticancer activities. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:543-567. [PMID: 37538028 DOI: 10.1080/1062936x.2023.2240698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Thiadiazole and hydrazone derivatives (5a-5i) were synthesized and their chemical structures were verified and described by 1H NMR, 13C NMR, and HRMS spectra. Three cancer cell lines (MCF-7, MDA, and HT-29) and one healthy cell line (L929) were used to test the cytotoxicity activity of synthesized compounds as well as their inhibitory activity against carbonic anhydrase I, II and IX isoenzymes. Compound 5d (29.74 µM) had a high inhibitory effect on hCA I and compound 5b (23.18 µM) had a high inhibitory effect on hCA II. Furthermore, compound 5i was found to be the most potent against CA IX. Compounds 5a-5i, 5b and 5i showed the highest anticancer effect against MCF-7 cell line with an IC50 value of 9.19 and 23.50 µM, and compound 5d showed the highest anticancer effect against MDA cell line with an IC50 value of 10.43 µM. The presence of fluoro substituent in the o-position of the phenyl ring increases the effect on hCA II, while the methoxy group in the o-position of the phenyl ring increases the activity on hCA I as well as increase the anticancer activity. Cell death induction was evaluated by Annexin V assay and it was determined that these compounds cause cell death by apoptosis. Molecular docking was performed for compounds 5b and 5d to understand their biological interactions. The physical and ADME properties of compounds 5b and 5d were evaluated using SwissADME.
Collapse
Affiliation(s)
- H E Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - U A Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - R Kapavarapu
- Department of Pharmaceutical Chemistry and Phytochemistry, Nirmala College of Pharmacy, Atmakur, India
| | - Y C Güldiken
- Department of Neurology, Kocaeli University Research and Application Hospital, İzmit, Turkey
| | - Z D Ş Inan
- Department of Histology and Embryology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ö Ö Güler
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - T K Uysal
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - A Uytun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - F N Çetin
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Y Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Z A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|