1
|
Zhi Z, Zhou P, He T, Chen S, Qian X, Ye Y, Wong WL, Li S, Sun N, Yuan W. Study of the antimicrobial activity of carvacrol and its mechanism of action against drug-resistant bacteria. Biochem Biophys Res Commun 2025; 757:151643. [PMID: 40107113 DOI: 10.1016/j.bbrc.2025.151643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/18/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Drug-resistant bacterial infections have been one of the critical health issues encountered worldwide currently because most conventional antibiotics are losing their effectiveness in clinical treatments. It is thus urgently to identify new antibiotics or alternatives against drug-resistant bacteria. For this purpose, we attempted to seek active compounds from commercially available natural products, which may be one of the fast-tracks to address the drug-resistant bacterial infections. In the present study, we investigated the antibacterial activity, antibacterial mechanism and synergistic effects of carvacrol against a panel of drug-resistant bacteria, including some clinical isolates. The results show that carvacrol (cymophenol), a monoterpenoid phenol, has excellent antibacterial activity. The MIC values against the bacteria examined are found to be 4-16 μg/mL. Our results also suggested that carvacrol might not likely to induce drug-resistance. More importantly, when carvacrol combined with first-line antibiotics, it exhibited good synergistic effects against drug-resistant bacteria. Moreover, in morphological studies, carvacrol could cause B. subtilis 168 elongation and S. aureus BAA-41 enlargement, which may suggest an antibacterial mechanism possibly correlated with the inhibition of bacterial cell division. We further demonstrated that carvacrol facilitated the polymerization of FtsZ that is a critically important protein for regulating bacterial cell division. Furthermore, molecular modeling predicted that carvacrol could interact with T7-loop of FtsZ. The findings of this study suggest that carvacrol may be a potential inhibitor of FtsZ and it could be utilized to combat drug-resistant bacteria in combination with existing antibiotics.
Collapse
Affiliation(s)
- Ziling Zhi
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, PR China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Peng Zhou
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, PR China
| | - Tenghui He
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China
| | - Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Xiping Qian
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Yanyan Ye
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Song Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China.
| | - Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China.
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
2
|
Miao ZY, Lin J, Chen WM. Natural sideromycins and siderophore-conjugated natural products as inspiration for novel antimicrobial agents. Eur J Med Chem 2025; 287:117333. [PMID: 39892091 DOI: 10.1016/j.ejmech.2025.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
The widespread emergence of multidrug-resistant (MDR) Gram-negative pathogens has posed a major challenge to clinical anti-infective therapy, and new effective treatments are urgently needed. A promising "Trojan horse" strategy involves conjugating antibiotics to siderophore molecules; the resulting siderophore-antibiotic conjugates (SACs) deliver antibiotics directly into cells by hijacking the sophisticated iron transport systems of Gram-negative bacteria, bypassing the outer membrane permeability barrier to enhance uptake and antibacterial efficacy. The clinical release of the first siderophore-antibiotic conjugate, cefiderocol, has aroused tremendous interest in the field among researchers and pharmaceutical companies. To date, most of the reported SACs have focused on the conjugation of siderophores to traditional antibacterial drugs. However, these antibacterial agents designed on the basis of the traditional antibiotic skeleton theoretically bear the risk of cross-resistance caused by shared molecular scaffolds. In this case, exploring novel natural product antibacterial conjugate scaffolds to circumvent the risk of early cross-resistance represents a presumably more sustainable approach for the development of SACs. In this review, we systematically summarize the research progress on siderophore-natural product conjugates as novel antimicrobial agents reported since 2010. Additionally, we propose challenges to be overcome and prospects for future development in this field.
Collapse
Affiliation(s)
- Zhi-Ying Miao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 511400, China
| | - Jing Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 511400, China.
| | - Wei-Min Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 511400, China.
| |
Collapse
|
3
|
Cheng S, Xu Y, Kang M, Zhu W, Wang L, Fu P. Aurovertins from a Marine-Derived Penicillium Species and Nonenzymatic Reactions in Their Formation. JOURNAL OF NATURAL PRODUCTS 2025; 88:554-562. [PMID: 39862218 DOI: 10.1021/acs.jnatprod.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Six new aurovertins (1-6) and a new citreoviridin derivative (7), together with six known analogues (8-13), were isolated from the marine-derived Penicillium sp. OUCMDZ-5930. Their structures were determined based on detailed spectroscopic analysis and ECD calculations. The putative nonenzymatic formation from citreoviridin to various aurovertins was presented, which was confirmed by chemical transformations. These results provide new insights into the formation mechanism of the 2,6-dioxabicyclo[3.2.1]octane ring system present in aurovertin-type natural products.
Collapse
Affiliation(s)
- Shan Cheng
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Meng Kang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Koul V, Sharma A, Kumari D, Jamwal V, Palmo T, Singh K. Breaking the resistance: integrative approaches with novel therapeutics against Klebsiella pneumoniae. Arch Microbiol 2024; 207:18. [PMID: 39724243 DOI: 10.1007/s00203-024-04205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Klebsiella pneumoniae is a leading cause of anti-microbial resistance in healthcare-associated infections that have posed a severe threat to neonatal and wider community. The escalating crises of antibiotic resistance have compelled researchers to explore an innovative arsenal beginning from natural resources to chemical modifications in order to overcome the ever-increasing resistance issues. The present review highlights the drug discovery efforts with a special focus on cutting-edge strategies in the hunt for potential drug candidates against MDR/XDR Klebsiella pneumoniae. Nature's bounty constituting plant extracts, essential oils, fungal extracts, etc. holds promising anti-bacterial potential especially when combined with existing antibiotics. Further, enhancing these natural products with synthetic moieties has improved their effectiveness, creating a bridge between the natural and synthetic world. Conversely, the synthetically modified novel scaffolds have been also designed to meticulously target specific sites. Furthermore, we have also elaborated various emerging strategies for broad-spectrum infections caused by K. pneumoniae, which include anti-microbial peptides, nanotechnology, drug repurposing, bacteriophage, photodynamic, and multidrug therapies. This review further addresses the challenges confronted by the research community and the future way forward in the field of drug discovery against multi-resistant bacterial infections.
Collapse
Affiliation(s)
- Vimarishi Koul
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani campus, Pilani, Rajasthan, 333031, India
| | - Akshi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishwani Jamwal
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Chen Y, Tan X, Zhang W, Li Y, Deng X, Zeng J, Huang L, Ma X. Natural products targeting macroautophagy signaling in hepatocellular carcinoma therapy: Recent evidence and perspectives. Phytother Res 2024; 38:1623-1650. [PMID: 38302697 DOI: 10.1002/ptr.8103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
Hepatocellular carcinoma (HCC), presently the second leading cause of global cancer-related mortality, continues to pose significant challenges in the realm of medical oncology, impacting both clinical drug selection and mechanistic research. Recent investigations have unveiled autophagy-related signaling as a promising avenue for HCC treatment. A growing body of research has highlighted the pivotal role of autophagy-modulating natural products in inhibiting HCC progression. In this context, we provide a concise overview of the fundamental autophagy mechanism and delineate the involvement of autophagic signaling pathways in HCC development. Additionally, we review pertinent studies demonstrating how natural products regulate autophagy to mitigate HCC. Our findings indicate that natural products exhibit cytotoxic effects through the induction of excessive autophagy, simultaneously impeding HCC cell proliferation by autophagy inhibition, thereby depriving HCC cells of essential energy. These effects have been associated with various signaling pathways, including PI3K/AKT, MAPK, AMPK, Wnt/β-catenin, Beclin-1, and ferroautophagy. These results underscore the considerable therapeutic potential of natural products in HCC treatment. However, it is important to note that the present study did not establish definitive thresholds for autophagy induction or inhibition by natural products. Further research in this domain is imperative to gain comprehensive insights into the dual role of autophagy, equipping us with a better understanding of this double-edged sword in HCC management.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Bai X, Chen H, Ren X, Zhong L, Wang X, Ji X, Zhang Y, Wang Y, Bian X. Heterologous Biosynthesis of Complex Bacterial Natural Products in Burkholderia gladioli. ACS Synth Biol 2023; 12:3072-3081. [PMID: 37708405 DOI: 10.1021/acssynbio.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Bacterial natural products (NPs) are an indispensable source of drugs and biopesticides. Heterologous expression is an essential method for discovering bacterial NPs and the efficient biosynthesis of valuable NPs, but the chassis for Gram-negative bacterial NPs remains inadequate. In this study, we built a Burkholderiales mutant Burkholderia gladioli Δgbn::attB by introducing an integrated site (attB) to inactivate the native gladiolin (gbn) biosynthetic gene cluster, which stabilizes large foreign gene clusters and reduces the native metabolite profile. The growth and successful heterologous production of high-value NPs such as phylogenetically close Burkholderiales-derived antitumor polyketides (PKs) rhizoxins, phylogenetically distant Gammaproteobacteria-derived anti-MRSA (methicillin-resistant Staphylococcus aureus) antibiotics WAP-8294As, and Deltaproteobacteria-derived antitumor PKs disorazols demonstrate that this strain is a potential chassis for Gram-negative bacterial NPs. We further improved the yields of WAP-8294As through promoter insertions and precursor pathway overexpression based on heterologous expression in this strain. This study provides a robust bacterial chassis for genome mining, efficient production, and molecular engineering of bacterial NPs.
Collapse
Affiliation(s)
- Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiangmei Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Digra S, Nonzom S. An insight into endophytic antimicrobial compounds: an updated analysis. PLANT BIOTECHNOLOGY REPORTS 2023; 17:1-31. [PMID: 37359493 PMCID: PMC10013304 DOI: 10.1007/s11816-023-00824-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
Resistance in micro-organisms against antimicrobial compounds is an emerging phenomenon in the modern era as compared to the traditional world which brings new challenges to discover novel antimicrobial compounds from different available sources, such as, medicinal plants, various micro-organisms, like, bacteria, fungi, algae, actinomycetes, and endophytes. Endophytes reside inside the plants without exerting any harmful impact on the host plant along with providing ample of benefits. In addition, they are capable of producing diverse antimicrobial compounds similar to their host, allowing them to serve as useful micro-organism for a range of therapeutic purposes. In recent years, a large number of studies on the antimicrobial properties of endophytic fungi have been carried out globally. These antimicrobials have been used to treat various bacterial, fungal, and viral infections in humans. In this review, the potential of fungal endophytes to produce diverse antimicrobial compounds along with their various benefits to their host have been focused on. In addition, classification systems of endophytic fungi as well as the need for antimicrobial production with genetic involvement and some of the vital novel antimicrobial compounds of endophytic origin can further be utilized in the pharmaceutical industries for various formulations along with the role of nanoparticles as antimicrobial agents have been highlighted.
Collapse
Affiliation(s)
- Shivani Digra
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| | - Skarma Nonzom
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| |
Collapse
|
8
|
Salimova EV, Mozgovoj OS, Efimova SS, Ostroumova OS, Parfenova LV. 3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds. MEMBRANES 2023; 13:309. [PMID: 36984696 PMCID: PMC10056636 DOI: 10.3390/membranes13030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Fusidic acid (FA) is an antibiotic with high activity against Staphylococcus aureus; it has been used in clinical practice since the 1960s. However, the narrow antimicrobial spectrum of FA limits its application in the treatment of bacterial infections. In this regard, this work aims both at the study of the antimicrobial effect of a number of FA amines and at the identification of their potential biological targets. In this way, FA analogues containing aliphatic and aromatic amino groups and biogenic polyamine, spermine and spermidine, moieties at the C-3 atom, were synthesized (20 examples). Pyrazinecarboxamide-substituted analogues exhibit a high antibacterial activity against S. aureus (MRSA) with MIC ≤ 0.25 μg/mL. Spermine and spermidine derivatives, along with activity against S. aureus, also inhibit the growth and reproduction of Gram-negative bacteria Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, and have a high fungicidal effect against Candida albicans and Cryptococcus neoformans. The study of the membrane activity demonstrated that the spermidine- and spermine-containing compounds are able to immerse into membranes and disorder the lipidsleading to a detergent effect. Moreover, spermine-based compounds are also able to form ion-permeable pores in the lipid bilayers mimicking the bacterial membranes. Using molecular docking, inhibition of the protein synthesis elongation factor EF-G was proposed, and polyamine substituents were shown to make the greatest contribution to the stability of the complexes of fusidic acid derivatives with biological targets. This suggests that the antibacterial effect of the obtained compounds may be associated with both membrane activity and inhibition of the elongation factor EF-G.
Collapse
Affiliation(s)
- Elena V. Salimova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Oleg S. Mozgovoj
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Svetlana S. Efimova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Olga S. Ostroumova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| |
Collapse
|
9
|
Wang L, Zong S, Wang H, Wu C, Wu G, Li F, Yu G, Li D, Zhu M. Dothideomins A-D, Antibacterial Polycyclic Bisanthraquinones from the Endophytic Fungus Dothideomycetes sp. BMC-101. JOURNAL OF NATURAL PRODUCTS 2022; 85:2789-2795. [PMID: 36480660 DOI: 10.1021/acs.jnatprod.2c00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Four new bisanthraquinones, dothideomins A-D (1-4), were identified from Dothideomycetes sp. BMC-101, an endophytic fungus isolated from Magnolia grandiflora L. leaves. Their chemical structures were established by NMR analysis, single-crystal X-ray crystallography, and ECD analysis. Dothideomins A-D (1-4) were characterized by an unusual 6/6/6/5/6/3/6/6 octocyclic scaffold (1 and 2) and a 6/6/6/5/6/6/6 heptacyclic scaffold (3 and 4), respectively. All compounds, especially 1 and 3, exhibited potent antibacterial activity with MIC values ranging from 0.4 to 0.8 μg/mL.
Collapse
Affiliation(s)
- Lusheng Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Shikun Zong
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Haotian Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Chengzhu Wu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Feng Li
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Meilin Zhu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| |
Collapse
|
10
|
Progress and Impact of Latin American Natural Product Databases. Biomolecules 2022; 12:biom12091202. [PMID: 36139041 PMCID: PMC9496143 DOI: 10.3390/biom12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) are a rich source of structurally novel molecules, and the chemical space they encompass is far from being fully explored. Over history, NPs have represented a significant source of bioactive molecules and have served as a source of inspiration for developing many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to drug discovery research, mitigating costs and time. In this sense, compound databases represent a fundamental element of CADD. This work reviews the progress toward developing compound databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic approaches to profile natural product databases. Furthermore, it reviews the present state of the art in developing Latin American NP databases and their practical applications to the drug discovery area.
Collapse
|
11
|
Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the proposed review, the pharmacological profile of unique, rare, and unusual fatty acids derived from natural amides is considered. These amides are produced by various microorganisms, lichens, and fungi. The biological activity of some natural fatty acid amides has been determined by their isolation from natural sources, but the biological activity of fatty acids has not been practically studied. According to QSAR data, the biological activity of fatty acids is shown, which demonstrated strong antifungal, antibacterial, antiviral, antineoplastic, anti-inflammatory activities. Moreover, some fatty acids have shown rare activities such as antidiabetic, anti-infective, anti-eczematic, antimutagenic, and anti-psoriatic activities. For some fatty acids that have pronounced biological properties, 3D graphs are shown that show a graphical representation of unique activities. These data are undoubtedly of both theoretical and practical interest for chemists, pharmacologists, as well as for the pharmaceutical industry, which is engaged in the synthesis of biologically active drugs.
Collapse
|