1
|
Breniere T, Fanciullino AL, Dumont D, Le Bourvellec C, Riva C, Borel P, Landrier JF, Bertin N. Effect of long-term deficit irrigation on tomato and goji berry quality: from fruit composition to in vitro bioaccessibility of carotenoids. FRONTIERS IN PLANT SCIENCE 2024; 15:1339536. [PMID: 38328704 PMCID: PMC10847359 DOI: 10.3389/fpls.2024.1339536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Drought is a persistent challenge for horticulture, affecting various aspects of fruit development and ultimately fruit quality, but the effect on nutritional value has been under-investigated. Here, fruit quality was studied on six tomato genotypes and one goji cultivar under deficit irrigation (DI), from fruit composition to in vitro bioaccessibility of carotenoids. For both species, DI concentrated most health-related metabolites in fresh fruit. On a dry mass basis, DI increased total phenolic and sugar concentration, but had a negative or insignificant impact on fruit ascorbic acid, organic acid, and alcohol-insoluble matter contents. DI also reduced total carotenoids content in tomato (-18.7% on average), especially β-carotene (-32%), but not in goji berry DW (+15.5% and +19.6%, respectively). DI reduced the overall in vitro bioaccessibility of carotenoids to varying degrees depending on the compound and plant species. Consequently, mixed micelles produced by digestion of fruits subjected to DI contained either the same or lesser quantities of carotenoids, even though fresh fruits could contain similar or higher quantities. Thus, DI effects on fruit composition were species and genotype dependent, but an increase in the metabolite concentration did not necessarily translate into greater bioaccessibility potentially due to interactions with the fruit matrix.
Collapse
Affiliation(s)
- Thomas Breniere
- INRAE, PSH UR1115, Avignon, France
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Avignon Université, UPR4278 LaPEC, Avignon, France
| | - Anne-Laure Fanciullino
- INRAE, PSH UR1115, Avignon, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | | | | | - Patrick Borel
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | | | | |
Collapse
|
2
|
Rosa-Martínez E, Bovy A, Plazas M, Tikunov Y, Prohens J, Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1135237. [PMID: 37025131 PMCID: PMC10070870 DOI: 10.3389/fpls.2023.1135237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences. A broad array of genetic and genomic tools has helped to identify QTLs and candidate genes associated with the fruit biosynthesis of phenolic acids and flavonoids. The aim of this review was to synthesize the available information making it easily available for researchers and breeders. The phenylpropanoid pathway is tightly regulated by structural genes, which are conserved across species, along with a complex network of regulatory elements like transcription factors, especially of MYB family, and cellular transporters. Moreover, phenolic compounds accumulate in tissue-specific and developmental-dependent ways, as different paths of the metabolic pathway are activated/deactivated along with fruit development. We retrieved 104 annotated putative orthologues encoding for key enzymes of the phenylpropanoid pathway in tomato (37), eggplant (29) and pepper (38) and compiled 267 QTLs (217 for tomato, 16 for eggplant and 34 for pepper) linked to fruit phenolic acids, flavonoids and total phenolics content. Combining molecular tools and genetic variability, through both conventional and genetic engineering strategies, is a feasible approach to improve phenolics content in tomato, eggplant and pepper. Finally, although the phenylpropanoid biosynthetic pathway has been well-studied in the Solanaceae, more research is needed on the identification of the candidate genes behind many QTLs, as well as their interactions with other QTLs and genes.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Pons C, Casals J, Palombieri S, Fontanet L, Riccini A, Rambla JL, Ruggiero A, Figás MDR, Plazas M, Koukounaras A, Picarella ME, Sulli M, Fisher J, Ziarsolo P, Blanca J, Cañizares J, Cammareri M, Vitiello A, Batelli G, Kanellis A, Brouwer M, Finkers R, Nikoloudis K, Soler S, Giuliano G, Grillo S, Grandillo S, Zamir D, Mazzucato A, Causse M, Díez MJ, Prohens J, Monforte AJ, Granell A. Atlas of phenotypic, genotypic and geographical diversity present in the European traditional tomato. HORTICULTURE RESEARCH 2022; 9:uhac112. [PMID: 35795386 PMCID: PMC9252105 DOI: 10.1093/hr/uhac112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Joan Casals
- Department of Agri-Food Engineering and Biotechnology/Miquel Agustí Foundation, Universitat Politècnica de Catalunya, Campus Baix Llobregat, Esteve Terrades 8, 08860 Castelldefels, Spain
| | - Samuela Palombieri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Lilian Fontanet
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allé des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
- HM Clause, Portes-lès-Valence, France
| | - Alessandro Riccini
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Jose Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Alessandra Ruggiero
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Maria del Rosario Figás
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Athanasios Koukounaras
- Aristotle University of Thessaloniki, School of Agriculture, Laboratory of Vegetable Crops, Thessaloniki, 54124 Greece
| | - Maurizio E Picarella
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Josef Fisher
- Hebrew University of Jerusalem, Robert H Smith Inst Plant Sci & Genet Agr, Rehovot, Israel
| | - Peio Ziarsolo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Jose Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Joaquin Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Antonella Vitiello
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Giorgia Batelli
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Angelos Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Matthijs Brouwer
- Wageningen Univ & Res, Plant Breeding, POB 386, NL-6700 AJ Wageningen, Netherlands
| | - Richard Finkers
- Wageningen Univ & Res, Plant Breeding, POB 386, NL-6700 AJ Wageningen, Netherlands
| | | | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Stephania Grillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Dani Zamir
- Hebrew University of Jerusalem, Robert H Smith Inst Plant Sci & Genet Agr, Rehovot, Israel
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Mathilde Causse
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allé des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Maria José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Antonio Jose Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| |
Collapse
|
4
|
Uluisik S. Chemical and structural quality traits during postharvest ripening regulated by chromosome segments from a wild relative of tomato Solanum pennellii IL4-2 and IL5-1. J Food Biochem 2021; 45:e13858. [PMID: 34251032 DOI: 10.1111/jfbc.13858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Tomato is usually harvested at an early ripening stage with high firmness suitable for storage and transportation but lacks many quality parameters such as sugars, organic acids, and phenolics. In a recent study, we have selected introgression lines (ILs) IL4-2 and IL5-1, developed from a cross between the Solanum pennellii and the Solanum lycopersicum M82, that exhibit differentiated postharvest shelf-life characteristics in the fruit compared to M82 and the rest of the ILs. Here, we first structurally and biochemically characterized IL4-2, IL5-1, and their parent M82 to decipher the cell wall mechanistic difference between soft (IL4-2) and firm (IL5-1) lines at two postharvest ripening periods. Generally, IL4-2 had more active cell wall modifications in terms of ripening-related gene expression, water-soluble pectin, and cell wall structure under the microscope, which probably makes this line softer than IL5-1. We also evaluated these lines based on commercial quality parameters, sugars, phenolics, organic, and amino acids to gain insight into their commercial and functional quality and reveal noticeable differences. In summary, the contribution of the S. pennellii IL5-1 and IL4-2 to the shelf life of the tomato was structurally characterized, and the component differences meeting the quality criteria were revealed.
Collapse
Affiliation(s)
- Selman Uluisik
- Burdur Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
5
|
Cappetta E, Andolfo G, Di Matteo A, Barone A, Frusciante L, Ercolano MR. Accelerating Tomato Breeding by Exploiting Genomic Selection Approaches. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1236. [PMID: 32962095 PMCID: PMC7569914 DOI: 10.3390/plants9091236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023]
Abstract
Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effects. GS enables the prediction of the breeding value of candidate genotypes for selection. In this work, we address important issues related to GS and its implementation in the plant context with special emphasis on tomato breeding. Genomic constraints and critical parameters affecting the accuracy of prediction such as the number of markers, statistical model, phenotyping and complexity of trait, training population size and composition should be carefully evaluated. The comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding programs is also discussed. GS applied to tomato breeding has already been shown to be feasible. We illustrated how GS can improve the rate of gain in elite line selection, and descendent and backcross schemes. The GS schemes have begun to be delineated and computer science can provide support for future selection strategies. A new promising breeding framework is beginning to emerge for optimizing tomato improvement procedures.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (E.C.); (G.A.); (A.D.M.); (A.B.); (L.F.)
| |
Collapse
|
6
|
Genomic Dissection of a Wild Region in a Superior Solanum pennellii Introgression Sub-Line with High Ascorbic Acid Accumulation in Tomato Fruit. Genes (Basel) 2020; 11:genes11080847. [PMID: 32722275 PMCID: PMC7466095 DOI: 10.3390/genes11080847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
The Solanum pennellii introgression lines (ILs) have been exploited to map quantitative trait loci (QTLs) and identify favorable alleles that could improve fruit quality traits in tomato varieties. Over the past few years, ILs exhibiting increased content of ascorbic acid in the fruit have been selected, among which the sub-line R182. The aims of this work were to identify the genes of the wild donor S. pennellii harbored by the sub-line and to detect genes controlling ascorbic acid accumulation by using genomics tools. A Genotyping-By-Sequencing (GBS) approach confirmed that no wild introgressions were present in the sub-line besides one region on chromosome 7. By using a dense single nucleotide polymorphism (SNP) map obtained by RNA sequencing (RNA-Seq), the wild region of the sub-line was finely identified; thus, defining 39 wild genes that replaced 33 genes of the ILs genetic background (cv. M82). The differentially expressed genes mapping in the region and the variants detected among the cultivated and the wild alleles evidenced the potential role of the novel genes present in the wild region. Interestingly, one upregulated gene, annotated as a major facilitator superfamily protein, showed a novel structure in R182, with respect to the parental lines. These genes will be further investigated using gene editing strategies.
Collapse
|
7
|
Tao X, Wu Q, Aalim H, Li L, Mao L, Luo Z, Ying T. Effects of Exogenous Abscisic Acid on Bioactive Components and Antioxidant Capacity of Postharvest Tomato during Ripening. Molecules 2020; 25:molecules25061346. [PMID: 32188064 PMCID: PMC7144105 DOI: 10.3390/molecules25061346] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone which is involved in the regulation of tomato ripening. In this research, the effects of exogenous ABA on the bioactive components and antioxidant capacity of the tomato during postharvest ripening were evaluated. Mature green cherry tomatoes were infiltrated with either ABA (1.0 mM) or deionized water (control) and stored in the dark for 15 days at 20 °C with 90% relative humidity. Fruit colour, firmness, total phenolic and flavonoid contents, phenolic compounds, lycopene, ascorbic acid, enzymatic activities, and antioxidant capacity, as well as the expression of major genes related to phenolic compounds, were periodically monitored. The results revealed that exogenous ABA accelerated the accumulations of total phenolic and flavonoid contents; mostly increased the contents of detected phenolic compounds; enhanced FRAP and DPPH activity; and promoted the activities of PAL, POD, PPO, CAT, and APX during tomato ripening. Meanwhile, the expressions of the major genes (PAL1, C4H, 4CL2, CHS2, F3H, and FLS) involved in the phenylpropanoid pathway were up-regulated (1.13- to 26.95-fold) in the tomato during the first seven days after treatment. These findings indicated that ABA promoted the accumulation of bioactive components and the antioxidant capacity via the regulation of gene expression during tomato ripening.
Collapse
Affiliation(s)
- Xiaoya Tao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (X.T.)
| | - Qiong Wu
- Collaborative Innovation Center of Henan Grain Crops, Henan Collaborative Innovation Center of Grain Storage and Security, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: (Q.W.); (T.Y.); Tel.: +86-371-67758022 (Q.W.); +86-571-88982174 (T.Y.)
| | - Halah Aalim
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (X.T.)
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (X.T.)
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (X.T.)
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (X.T.)
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (X.T.)
- Correspondence: (Q.W.); (T.Y.); Tel.: +86-371-67758022 (Q.W.); +86-571-88982174 (T.Y.)
| |
Collapse
|
8
|
Gürbüz Çolak N, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione and phenolic acids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110393. [PMID: 32005398 DOI: 10.1016/j.plantsci.2019.110393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The nutritional value of a crop lies not only in its protein, lipid, and sugar content but also involves compounds such as the antioxidants lycopene, β-carotene and vitamin C. In the present study, wild tomato Solanum pimpinellifolium LA 1589 was assessed for its potential to improve antioxidant content. This wild species was found to be a good source of alleles for increasing β-carotene, lycopene, vitamin C and vitamin E contents in cultivated tomato. Characterization of an LA 1589 interspecific inbred backcross line (IBL) mapping population revealed many individuals with transgressive segregation for the antioxidants confirming the usefulness of this wild species for breeding of these traits. Molecular markers were used to identify QTLs for the metabolites in the IBL population. In total, 64 QTLs were identified for the antioxidants and their locations were compared to the map positions of previously identified QTLs for confirmation. Four (57 %) of the carotenoid QTLs, four (36 %) of the vitamin QTLs, and 11 (25 %) of the phenolic acid QTLs were supported by previous studies. Furthermore, several potential candidate genes were identified for vitamins C and E and phenolic acids loci. These candidate genes might be used as markers in breeding programs to increase tomato's antioxidant content.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | | | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey.
| |
Collapse
|
9
|
Dossa K, Li D, Zhou R, Yu J, Wang L, Zhang Y, You J, Liu A, Mmadi MA, Fonceka D, Diouf D, Cissé N, Wei X, Zhang X. The genetic basis of drought tolerance in the high oil crop Sesamum indicum. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1788-1803. [PMID: 30801874 PMCID: PMC6686131 DOI: 10.1111/pbi.13100] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 05/18/2023]
Abstract
Unlike most of the important food crops, sesame can survive drought but severe and repeated drought episodes, especially occurring during the reproductive stage, significantly curtail the productivity of this high oil crop. Genome-wide association study was conducted for traits related to drought tolerance using 400 diverse sesame accessions, including landraces and modern cultivars. Ten stable QTLs explaining more than 40% of the phenotypic variation and located on four linkage groups were significantly associated with drought tolerance related traits. Accessions from the tropical area harboured higher numbers of drought tolerance alleles at the peak loci and were found to be more tolerant than those from the northern area, indicating a long-term genetic adaptation to drought-prone environments. We found that sesame has already fixed important alleles conferring survival to drought which may explain its relative high drought tolerance. However, most of the alleles crucial for productivity and yield maintenance under drought conditions are far from been fixed. This study also revealed that pyramiding the favourable alleles observed at the peak loci is of high potential for enhancing drought tolerance in sesame. In addition, our results highlighted two important pleiotropic QTLs harbouring known and unreported drought tolerance genes such as SiABI4, SiTTM3, SiGOLS1, SiNIMIN1 and SiSAM. By integrating candidate gene association study, gene expression and transgenic experiments, we demonstrated that SiSAM confers drought tolerance by modulating polyamine levels and ROS homeostasis, and a missense mutation in the coding region partly contributes to the natural variation of drought tolerance in sesame.
Collapse
Affiliation(s)
- Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Aili Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Marie A. Mmadi
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Daniel Fonceka
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Ndiaga Cissé
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
| | - Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| |
Collapse
|
10
|
Chong X, Su J, Wang F, Wang H, Song A, Guan Z, Fang W, Jiang J, Chen S, Chen F, Zhang F. Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum. PLANT MOLECULAR BIOLOGY 2019; 99:407-420. [PMID: 30701353 DOI: 10.1007/s11103-019-00826-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/19/2019] [Indexed: 05/21/2023]
Abstract
81 SNPs were identified for three inflorescence-related traits, in which 15 were highly favorable. Two dCAPS markers were developed for future MAS breeding, and six candidate genes were predicted. Chrysanthemum is a leading ornamental species worldwide and demonstrates a wealth of morphological variation. Knowledge about the genetic basis of its phenotypic variation for key horticultural traits can contribute to its effective management and genetic improvement. In this study, we conducted a genome-wide association study (GWAS) based on two years of phenotype data and a set of 92,617 single nucleotide polymorphisms (SNPs) using a panel of 107 diverse cut chrysanthemums to dissect the genetic control of three inflorescence-related traits. A total of 81 SNPs were significantly associated with the three inflorescence-related traits (capitulum diameter, number of ray florets and flowering time) in at least one environment, with an individual allele explaining 22.72-38.67% of the phenotypic variation. Fifteen highly favorable alleles were identified for the three target traits by computing the phenotypic effect values for the stable associations detected in 2 year-long trials at each locus. Dosage pyramiding effects of the highly favorable SNP alleles and significant linear correlations between highly favorable allele numbers and corresponding phenotypic performance were observed. Two highly favorable SNP alleles correlating to flowering time and capitulum diameter were converted to derived cleaved amplified polymorphic sequence (dCAPS) markers to facilitate future breeding. Finally, six putative candidate genes were identified that contribute to flowering time and capitulum diameter. These results serve as a foundation for analyzing the genetic mechanisms underlying important horticultural traits and provide valuable insights into molecular marker-assisted selection (MAS) in chrysanthemum breeding programs.
Collapse
Affiliation(s)
- Xinran Chong
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Jiangshuo Su
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Fan Wang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
11
|
Calafiore R, Aliberti A, Ruggieri V, Olivieri F, Rigano MM, Barone A. Phenotypic and Molecular Selection of a Superior Solanum pennellii Introgression Sub-Line Suitable for Improving Quality Traits of Cultivated Tomatoes. FRONTIERS IN PLANT SCIENCE 2019; 10:190. [PMID: 30853967 PMCID: PMC6395448 DOI: 10.3389/fpls.2019.00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
The Solanum pennellii Introgression Line (IL) population can be exploited to identify favorable alleles that can improve yield and fruit quality traits in commercial tomato varieties. Over the past few years, we have selected ILs that exhibit increased content of antioxidant compounds in the fruit compared to the cultivar M82, which represents the genetic background in which the different wild regions of the S. pennellii ILs were included. Recently, we have identified seven sub-lines of the IL7-3 accumulating different amounts of antioxidants in the ripe fruit. Since the wild region carried on chromosome 7 induces a low fruit production in IL7-3, the first aim of the present work was to evaluate yield performances of the selected sub-lines in three experimental fields located in the South of Italy. Another aim was to confirm in the same lines the high levels of antioxidants and evaluate other fruit quality traits. On red ripe fruit, the levels of soluble solids content, firmness, and ascorbic acid (AsA) were highly variable among the sub-lines grown in three environmental conditions, evidencing a significant genotype by environment interaction for soluble solids and AsA content. Only one sub-line (coded R182) exhibited a significantly higher firmness, even though no differences were observed for this trait between the parental lines M82 and IL7-3. The same sub-line showed significantly higher AsA content compared to M82, thus resembling IL7-3. Even though IL7-3 always exhibited a significantly lower yield, all the sub-lines showed yield variability over the three trials. Interestingly, the sub-line R182, selected for its better performances in terms of fruit quality, in all the trials showed a production comparable to that of the control line M82. A group of species-specific molecular markers was tested on R182 and on the parental genotypes in order to better define the wild genomic regions carried by the elite line R182. In these regions three candidate genes that could increase the level of AsA in the fruit were identified. In the future, the line R182 could be used as pre-breeding material in order to obtain new varieties improved for nutritional traits.
Collapse
Affiliation(s)
| | | | | | | | | | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
12
|
Sun H, Meng M, Yan Z, Lin Z, Nie X, Yang X. Genome-wide association mapping of stress-tolerance traits in cotton. THE CROP JOURNAL 2019; 7:77-88. [PMID: 0 DOI: 10.1016/j.cj.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
13
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
14
|
GWAS Uncovers Differential Genetic Bases for Drought and Salt Tolerances in Sesame at the Germination Stage. Genes (Basel) 2018; 9:genes9020087. [PMID: 29443881 PMCID: PMC5852583 DOI: 10.3390/genes9020087] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Sesame has great potential as an industrial crop but its production is challenged by drought and salt stresses. To unravel the genetic variants leading to salinity and drought tolerances at the germination stage, genome-wide association studies of stress tolerance indexes related to NaCl-salt and polyethylene glycol-drought induced stresses were performed with a diversity panel of 490 sesame accessions. An extensive variation was observed for drought and salt responses in the population and most of the accessions were moderately tolerant to both stresses. A total of 132 and 120 significant Single Nucleotide Polymorphisms (SNPs) resolved to nine and 15 Quantitative trait loci (QTLs) were detected for drought and salt stresses, respectively. Only two common QTLs for drought and salt responses were found located on linkage groups 5 and 7, respectively. This indicates that the genetic bases for drought and salt responses in sesame are different. A total of 13 and 27 potential candidate genes were uncovered for drought and salt tolerance indexes, respectively, encoding transcription factors, antioxidative enzymes, osmoprotectants and involved in hormonal biosynthesis, signal transduction or ion sequestration. The identified SNPs and potential candidate genes represent valuable resources for future functional characterization towards the enhancement of sesame cultivars for drought and salt tolerances.
Collapse
|
15
|
Zhou Q, Han D, Mason AS, Zhou C, Zheng W, Li Y, Wu C, Fu D, Huang Y. Earliness traits in rapeseed (Brassica napus): SNP loci and candidate genes identified by genome-wide association analysis. DNA Res 2017; 25:229-244. [PMID: 29236947 PMCID: PMC6014513 DOI: 10.1093/dnares/dsx052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/14/2017] [Indexed: 11/29/2022] Open
Abstract
Life cycle timing is critical for yield and productivity of Brassica napus (rapeseed) cultivars grown in different environments. To facilitate breeding for earliness traits in rapeseed, SNP loci and underlying candidate genes associated with the timing of initial flowering, maturity and final flowering, as well as flowering period (FP) were investigated in two environments in a diversity panel comprising 300 B. napus inbred lines. Genome-wide association studies (GWAS) using 201,817 SNP markers previously developed from SLAF-seq (specific locus amplified fragment sequencing) revealed a total of 131 SNPs strongly linked (P < 4.96E-07) to the investigated traits. Of these 131 SNPs, 40 fell into confidence intervals or were physically adjacent to previously published flowering time QTL or SNPs. Phenotypic effect analysis detected 35 elite allelic variants for early maturing, and 90 for long FP. Candidate genes present in the same linkage disequilibrium blocks (r2>0.6) or in 100 kb regions around significant trait-associated SNPs were screened, revealing 57 B. napus genes (33 SNPs) orthologous to 39 Arabidopsis thaliana flowering time genes. These results support the practical and scientific value of novel large-scale SNP data generation in uncovering the genetic control of agronomic traits in B. napus, and also provide a theoretical basis for molecular marker-assisted selection of earliness breeding in rapeseed.
Collapse
Affiliation(s)
- Qinghong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Depeng Han
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Annaliese S Mason
- Plant Breeding Department, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen 35392, Germany
| | - Can Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Zheng
- Jiangxi Institute of Red Soil, Jinxian, 331717, China
| | - Yazhen Li
- Jiangxi Institute of Red Soil, Jinxian, 331717, China
| | - Caijun Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
16
|
Rigano MM, Raiola A, Docimo T, Ruggieri V, Calafiore R, Vitaglione P, Ferracane R, Frusciante L, Barone A. Metabolic and Molecular Changes of the Phenylpropanoid Pathway in Tomato ( Solanum lycopersicum) Lines Carrying Different Solanum pennellii Wild Chromosomal Regions. FRONTIERS IN PLANT SCIENCE 2016; 7:1484. [PMID: 27757117 PMCID: PMC5047917 DOI: 10.3389/fpls.2016.01484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/20/2016] [Indexed: 05/02/2023]
Abstract
Solanum lycopersicum represents an important dietary source of bioactive compounds including the antioxidants flavonoids and phenolic acids. We previously identified two genotypes (IL7-3 and IL12-4) carrying loci from the wild species Solanum pennellii, which increased antioxidants in the fruit. Successively, these lines were crossed and two genotypes carrying both introgressions at the homozygous condition (DHO88 and DHO88-SL) were selected. The amount of total antioxidant compounds was increased in DHOs compared to both ILs and the control genotype M82. In order to understand the genetic mechanisms underlying the positive interaction between the two wild regions pyramided in DHO genotypes, detailed analyses of the metabolites accumulated in the fruit were carried out by colorimetric methods and LC/MS/MS. These analyses evidenced a lower content of flavonoids in DHOs and in ILs, compared to M82. By contrast, in the DHOs the relative content of phenolic acids increased, particularly the fraction of hexoses, thus evidencing a redirection of the phenylpropanoid flux toward the biosynthesis of phenolic acid glycosides in these genotypes. In addition, the line DHO88 exhibited a lower content of free phenolic acids compared to M82. Interestingly, the two DHOs analyzed differ in the size of the wild region on chromosome 12. Genes mapping in the introgression regions were further investigated. Several genes of the phenylpropanoid biosynthetic pathway were identified, such as one 4-coumarate:CoA ligase and two UDP-glycosyltransferases in the region 12-4 and one chalcone isomerase and one UDP-glycosyltransferase in the region 7-3. Transcriptomic analyses demonstrated a different expression of the detected genes in the ILs and in the DHOs compared to M82. These analyses, combined with biochemical analyses, suggested a central role of the 4-coumarate:CoA ligase in redirecting the phenylpropanoid pathways toward the biosynthesis of phenolic acids in the pyramided lines. Moreover, analyses here carried out suggest the presence in the introgression regions of novel regulatory proteins, such as one Myb4 detected on chromosome 7 and one bHLH detected in chromosome 12. Overall our data indicate that structural and regulatory genes identified in this study might have a key role for the manipulation of the phenylpropanoid metabolic pathway in tomato fruit.
Collapse
Affiliation(s)
- Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Teresa Docimo
- Istituto di Bioscienze e BioRisorse, UOS Portici, Consiglio Nazionale delle RicercheNaples, Italy
| | - Valentino Ruggieri
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Roberta Calafiore
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| |
Collapse
|
17
|
Su J, Pang C, Wei H, Li L, Liang B, Wang C, Song M, Wang H, Zhao S, Jia X, Mao G, Huang L, Geng D, Wang C, Fan S, Yu S. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genomics 2016; 17:687. [PMID: 27576450 PMCID: PMC5006539 DOI: 10.1186/s12864-016-2875-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022] Open
Abstract
Background Early maturity is one of the most important and complex agronomic traits in upland cotton (Gossypium hirsutum L). To dissect the genetic architecture of this agronomically important trait, a population consisting of 355 upland cotton germplasm accessions was genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) approach, of which a subset of 185 lines representative of the diversity among the accessions was phenotypically characterized for six early maturity traits in four environments. A genome-wide association study (GWAS) was conducted using the generalized linear model (GLM) and mixed linear model (MLM). Results A total of 81,675 SNPs in 355 upland cotton accessions were discovered using SLAF-seq and were subsequently used in GWAS. Thirteen significant associations between eight SNP loci and five early maturity traits were successfully identified using the GLM and MLM; two of the 13 associations were common between the models. By computing phenotypic effect values for the associations detected at each locus, 11 highly favorable SNP alleles were identified for five early maturity traits. Moreover, dosage pyramiding effects of the highly favorable SNP alleles and significant linear correlations between the numbers of highly favorable alleles and the phenotypic values of the target traits were identified. Most importantly, a major locus (rs13562854) on chromosome Dt3 and a potential candidate gene (CotAD_01947) for early maturity were detected. Conclusions This study identified highly favorable SNP alleles and candidate genes associated with early maturity traits in upland cotton. The results demonstrate that GWAS is a powerful tool for dissecting complex traits and identifying candidate genes. The highly favorable SNP alleles and candidate genes for early maturity traits identified in this study should be show high potential for improvement of early maturity in future cotton breeding programs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2875-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junji Su
- College of Agronomy, Northwest A&F University, Yangling, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China.,Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Libei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Liang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Caixiang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuqi Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyun Jia
- College of Agronomy, Northwest A&F University, Yangling, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guangzhi Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Long Huang
- Bioinformatics Division, Biomarker Technologies Corporation, Beijing, China
| | - Dandan Geng
- Bioinformatics Division, Biomarker Technologies Corporation, Beijing, China
| | - Chengshe Wang
- College of Agronomy, Northwest A&F University, Yangling, China.
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, China. .,State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China.
| |
Collapse
|
18
|
Ikeda H, Shibuya T, Imanishi S, Aso H, Nishiyama M, Kanayama Y. Dynamic Metabolic Regulation by a Chromosome Segment from a Wild Relative During Fruit Development in a Tomato Introgression Line, IL8-3. PLANT & CELL PHYSIOLOGY 2016; 57:1257-1270. [PMID: 27076398 DOI: 10.1093/pcp/pcw075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
We performed comparative metabolome and transcriptome analyses throughout fruit development using the tomato cultivar M82 and its near-isogenic line IL8-3, with interesting and useful traits such as a high content of soluble solids. Marked differences between M82 and IL8-3 were found not only in ripe fruits but also at 20 days after flowering (DAF) in the hierarchical clustering analysis of the metabolome, whereas patterns were similar between the two genotypes at 10 and 30 DAF. Our metabolome analysis conclusively showed that 20 DAF is an important stage of fruit metabolism and that the Solanum pennellii introgressed region in IL8-3 plays a key role in metabolic changes at this stage. Carbohydrate and amino acid metabolism were found to be promoted in IL8-3 at 20 DAF and the ripening stage, respectively, whereas transcriptome analysis showed no marked differences between the two genotypes, indicating that dynamic metabolic regulation at 20 DAF and the ripening stage was controlled by relatively few genes. The transcript levels of the cell wall invertase (LIN6) and sucrose synthase (TOMSSF) genes in starch and sucrose metabolic pathway and that of the glutamate synthase (SlGOGAT) gene in the amino acid metabolic pathway in IL8-3 fruit were higher than those in M82, and SlGOGAT expression was enhanced under high-sugar conditions. The results suggest that the promotion of carbohydrate metabolism by LIN6 and TOMSSF in IL8-3 fruit at 20 DAF affects SlGOGAT expression and amino acid accumulation via higher sugar concentration at the late stage of fruit development.
Collapse
Affiliation(s)
- Hiroki Ikeda
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan Present address: (H. Ikeda), NARO Tohoku Agricultural Research Center, Morioka 020-0198, Japan
| | - Tomoki Shibuya
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Shunsuke Imanishi
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, 514-2392 Japan
| | - Hisashi Aso
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Manabu Nishiyama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| |
Collapse
|
19
|
Calafiore R, Ruggieri V, Raiola A, Rigano MM, Sacco A, Hassan MI, Frusciante L, Barone A. Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2016; 7:397. [PMID: 27092148 PMCID: PMC4824784 DOI: 10.3389/fpls.2016.00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
|
20
|
Grandillo S, Cammareri M. Molecular Mapping of Quantitative Trait Loci in Tomato. COMPENDIUM OF PLANT GENOMES 2016. [DOI: 10.1007/978-3-662-53389-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Toppino L, Barchi L, Lo Scalzo R, Palazzolo E, Francese G, Fibiani M, D'Alessandro A, Papa V, Laudicina VA, Sabatino L, Pulcini L, Sala T, Acciarri N, Portis E, Lanteri S, Mennella G, Rotino GL. Mapping Quantitative Trait Loci Affecting Biochemical and Morphological Fruit Properties in Eggplant (Solanum melongena L.). FRONTIERS IN PLANT SCIENCE 2016; 7:256. [PMID: 26973692 PMCID: PMC4777957 DOI: 10.3389/fpls.2016.00256] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/15/2016] [Indexed: 05/19/2023]
Abstract
Eggplant berries are a source of health-promoting metabolites including antioxidant and nutraceutical compounds, mainly anthocyanins and chlorogenic acid; however, they also contain some anti-nutritional compounds such as steroidal glycoalkaloids (SGA) and saponins, which are responsible for the bitter taste of the flesh and with potential toxic effects on humans. Up to now, Quantitative Trait Loci (QTL) for the metabolic content are far from being characterized in eggplant, thus hampering the application of breeding programs aimed at improving its fruit quality. Here we report on the identification of some QTL for the fruit metabolic content in an F2 intraspecific mapping population of 156 individuals, obtained by crossing the eggplant breeding lines "305E40" × "67/3." The same population was previously employed for the development of a RAD-tag based linkage map and the identification of QTL associated to morphological and physiological traits. The mapping population was biochemically characterized for both fruit basic qualitative data, like dry matter, °Brix, sugars, and organic acids, as well as for health-related compounds such chlorogenic acid, (the main flesh monomeric phenol), the two peel anthocyanins [i.e., delphinidin-3-rutinoside (D3R) and delphinidin-3-(p- coumaroylrutinoside)-5-glucoside (nasunin)] and the two main steroidal glycoalkaloids, solasonine, and solamargine. For most of the traits, one major QTL (PVE ≥10%) was spotted and putative orthologies with other Solanaceae crops are discussed. The present results supply valuable information to eggplant breeders on the inheritance of key fruit quality traits, thus providing potential tools to assist future breeding programs.
Collapse
Affiliation(s)
- Laura Toppino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORL, Unità di Ricerca per l'OrticolturaMontanaso Lombardo, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Plant Genetics and Breeding, University of TurinTurin, Italy
| | - Roberto Lo Scalzo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-IAA, Unità di Ricerca per i Processi dell'Industria AgroalimentareMilano, Italy
| | - Eristanna Palazzolo
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di PalermoPalermo, Italy
| | - Gianluca Francese
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORT, Centro di Ricerca per l'OrticolturaPontecagnano-Faiano, Italy
| | - Marta Fibiani
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-IAA, Unità di Ricerca per i Processi dell'Industria AgroalimentareMilano, Italy
| | - Antonietta D'Alessandro
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORT, Centro di Ricerca per l'OrticolturaPontecagnano-Faiano, Italy
| | - Vincenza Papa
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-IAA, Unità di Ricerca per i Processi dell'Industria AgroalimentareMilano, Italy
| | - Vito A. Laudicina
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di PalermoPalermo, Italy
| | - Leo Sabatino
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di PalermoPalermo, Italy
| | - Laura Pulcini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORA, Unità di Ricerca per l'OrticolturaMonsampolo del Tronto, Italy
| | - Tea Sala
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORL, Unità di Ricerca per l'OrticolturaMontanaso Lombardo, Italy
| | - Nazzareno Acciarri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORA, Unità di Ricerca per l'OrticolturaMonsampolo del Tronto, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Plant Genetics and Breeding, University of TurinTurin, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Plant Genetics and Breeding, University of TurinTurin, Italy
| | - Giuseppe Mennella
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORT, Centro di Ricerca per l'OrticolturaPontecagnano-Faiano, Italy
| | - Giuseppe L. Rotino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORL, Unità di Ricerca per l'OrticolturaMontanaso Lombardo, Italy
- *Correspondence: Giuseppe L. Rotino
| |
Collapse
|
22
|
Rigano MM, Raiola A, Tenore GC, Monti DM, Del Giudice R, Frusciante L, Barone A. Quantitative Trait Loci Pyramiding Can Improve the Nutritional Potential of Tomato ( Solanum lycopersicum) Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11519-27. [PMID: 25369113 DOI: 10.1021/jf502573n] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Maria Manuela Rigano
- Department
of Agricultural Sciences, University of Naples Federico II, Via
Università 100, 80055 Portici (Naples), Italy
| | - Assunta Raiola
- Department
of Agricultural Sciences, University of Naples Federico II, Via
Università 100, 80055 Portici (Naples), Italy
| | - Gian Carlo Tenore
- Department
of Pharmacy, University of Naples Federico II, Via D. Montesano
49, 80131 Naples, Italy
| | - Daria Maria Monti
- Department
of Chemical Sciences, University of Naples Federico II, Complesso Universitario M.S.Angelo, via Cinthia 4, 80126, Naples, Italy
| | - Rita Del Giudice
- Department
of Chemical Sciences, University of Naples Federico II, Complesso Universitario M.S.Angelo, via Cinthia 4, 80126, Naples, Italy
| | - Luigi Frusciante
- Department
of Agricultural Sciences, University of Naples Federico II, Via
Università 100, 80055 Portici (Naples), Italy
| | - Amalia Barone
- Department
of Agricultural Sciences, University of Naples Federico II, Via
Università 100, 80055 Portici (Naples), Italy
| |
Collapse
|
23
|
Zhang B, Li W, Chang X, Li R, Jing R. Effects of favorable alleles for water-soluble carbohydrates at grain filling on grain weight under drought and heat stresses in wheat. PLoS One 2014; 9:e102917. [PMID: 25036550 PMCID: PMC4103880 DOI: 10.1371/journal.pone.0102917] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/25/2014] [Indexed: 12/03/2022] Open
Abstract
Drought, heat and other abiotic stresses during grain filling can result in reductions in grain weight. Conserved water-soluble carbohydrates (WSC) at early grain filling play an important role in partial compensation of reduced carbon supply. A diverse population of 262 historical winter wheat accessions was used in the present study. There were significant correlations between 1000-grain weight (TGW) and four types of WSC, viz. (1) total WSC at the mid-grain filling stage (14 days after flowering) produced by leaves and non-leaf organs; (2) WSC contributed by current leaf assimilation during the mid-grain filling; (3) WSC in non-leaf organs at the mid-grain filling, excluding the current leaf assimilation; and (4) WSC used for respiration and remobilization during the mid-grain filling. Association and favorable allele analyses of 209 genome-wide SSR markers and the four types of WSC were conducted using a mixed linear model. Seven novel favorable WSC alleles exhibited positive individual contributions to TGW, which were verified under 16 environments. Dosage effects of pyramided favorable WSC alleles and significantly linear correlations between the number of favorable WSC alleles and TGW were observed. Our results suggested that pyramiding more favorable WSC alleles was effective for improving both WSC and grain weight in future wheat breeding programs.
Collapse
Affiliation(s)
- Bin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runzhi Li
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A. Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators Inflamm 2014; 2014:139873. [PMID: 24744504 PMCID: PMC3972926 DOI: 10.1155/2014/139873] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/01/2014] [Indexed: 02/07/2023] Open
Abstract
Consumption of tomato fruits, like those of many other plant species that are part of the human diet, is considered to be associated with several positive effects on health. Indeed, tomato fruits are an important source of bioactive compounds with known beneficial effects including vitamins, antioxidants, and anticancer substances. In particular, antioxidant metabolites are a group of vitamins, carotenoids, phenolic compounds, and phenolic acid that can provide effective protection by neutralizing free radicals, which are unstable molecules linked to the development of a number of degenerative diseases and conditions. In this review, we will summarize the recent progress on tomatoes nutritional importance and mechanisms of action of different phytochemicals against inflammation processes and prevention of chronic noncommunicable diseases (e.g., obesity, diabetes, coronary heart disease, and hypertension). In addition, we will summarize the significant progress recently made to improve the nutritional quality of tomato fruits through metabolic engineering and/or breeding.
Collapse
Affiliation(s)
- Assunta Raiola
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, Portici, 80055 Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, Portici, 80055 Naples, Italy
| | - Roberta Calafiore
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, Portici, 80055 Naples, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, Portici, 80055 Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, Portici, 80055 Naples, Italy
| |
Collapse
|
25
|
Zhang B, Shi W, Li W, Chang X, Jing R. Efficacy of pyramiding elite alleles for dynamic development of plant height in common wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2013; 32:327-338. [PMID: 23976874 PMCID: PMC3748324 DOI: 10.1007/s11032-013-9873-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/18/2013] [Indexed: 05/28/2023]
Abstract
Plant height is an important botanical feature closely related to yield. Two populations consisting of 118 and 262 accessions respectively were used to identify elite alleles for plant height and to validate their allelic effects. Plant height was measured from the early booting to the flowering stages. Simple sequence repeat markers for candidate quantitative trait locus (QTL) regions with large effects identified in a doubled haploid (DH) population (Hanxuan 10 × Lumai 14) were selected for further verification by association analysis. Nine loci significantly (P < 0.001) associated with plant height were detected 13 times in the population with 118 accessions. Three loci (Xgwm11-1B, Xwmc349-4B and Xcfd23-4D) were identified in three, two and two periods of plant height growth, respectively. Markers Xbarc168-2D, Xgwm249-2D, Xwmc349-4B, Xcfd23-4D and Xgwm410-5A located at or near additive QTL regions in the DH population proved to coincide with known Rht loci. The results showed a consistency between linkage analysis and association mapping, and also confirmed the value of fine mapping of QTL through combined linkage and association analyses. For final plant height, the alleles Xgwm11-1B208 , Xwmc349-4B103 and Xcfd23-4D202 exhibited negative effects, i.e. reducing plant height; Xwmc349-4B101 and Xcfd23-4D205 showed significant positive effects. A second larger population (262 accessions) was used to validate the effects of these large-effect alleles and the efficacy of pyramiding in eight environments (year × site × water regime combinations). Strong correlations between final plant height and numbers of large-effect alleles indicated that the alleles contributed additively to plant height. The additive effects showed that pyramiding elite alleles for target traits has significant potential for wheat breeding.
Collapse
Affiliation(s)
- Bin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Wei Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Weiyu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|