1
|
Yang F, Lv G. Combined analysis of transcriptome and metabolome reveals the molecular mechanism and candidate genes of Haloxylon drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1020367. [PMID: 36330247 PMCID: PMC9622360 DOI: 10.3389/fpls.2022.1020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Haloxylon ammodendron and Haloxylon persicum, as typical desert plants, show strong drought tolerance and environmental adaptability. They are ideal model plants for studying the molecular mechanisms of drought tolerance. Transcriptomic and metabolomic analyses were performed to reveal the response mechanisms of H. ammodendron and H. persicum to a drought environment at the levels of transcription and physiological metabolism. The results showed that the morphological structures of H. ammodendron and H. persicum showed adaptability to drought stress. Under drought conditions, the peroxidase activity, abscisic acid content, auxin content, and gibberellin content of H. ammodendron increased, while the contents of proline and malondialdehyde decreased. The amino acid content of H. persicum was increased, while the contents of proline, malondialdehyde, auxin, and gibberellin were decreased. Under drought conditions, 12,233 and 17,953 differentially expressed genes (DEGs) were identified in H. ammodendron and H. persicum , respectively, including members of multiple transcription factor families such as FAR1, AP2/ERF, C2H2, bHLH, MYB, C2C2, and WRKY that were significantly up-regulated under drought stress. In the positive ion mode, 296 and 452 differential metabolites (DEMs) were identified in H. ammodendron and H. persicum, respectively; in the negative ion mode, 252 and 354 DEMs were identified, primarily in carbohydrate and lipid metabolism. A combined transcriptome and metabolome analysis showed that drought stress promoted the glycolysis/gluconeogenesis pathways of H. ammodendron and H. persicum and increased the expression of amino acid synthesis pathways, consistent with the physiological results. In addition, transcriptome and metabolome were jointly used to analyze the expression changes of the genes/metabolites of H. ammodendron and H. persicum that were associated with drought tolerance but were regulated differently in the two plants. This study identified drought-tolerance genes and metabolites in H. ammodendron and H. persicum and has provided new ideas for studying the drought stress response of Haloxylon.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| |
Collapse
|
2
|
Sanchez J, Kaur PP, Pabuayon ICM, Karampudi NBR, Kitazumi A, Sandhu N, Catolos M, Kumar A, de Los Reyes BG. DECUSSATE network with flowering genes explains the variable effects of qDTY12.1 to rice yield under drought across genetic backgrounds. THE PLANT GENOME 2022; 15:e20168. [PMID: 34806842 DOI: 10.1002/tpg2.20168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The impact of qDTY12.1 in maintaining yield under drought has not been consistent across genetic backgrounds. We hypothesized that synergism or antagonism with additive-effect peripheral genes across the background genome either enhances or undermines its full potential. By modeling the transcriptional networks across sibling qDTY12.1-introgression lines with contrasting yield under drought (LPB = low-yield penalty; HPB = high-yield penalty), the qDTY12.1-encoded DECUSSATE gene (OsDEC) was revealed as the core of a synergy with other genes in the genetic background. OsDEC is expressed in flag leaves and induced by progressive drought at booting stage in LPB but not in HPB. The unique OsDEC signature in LPB is coordinated with 35 upstream and downstream peripheral genes involved in floral development through the cytokinin signaling pathway. Results support the differential network rewiring effects through genetic coupling-uncoupling between qDTY12.1 and other upstream and downstream peripheral genes across the distinct genetic backgrounds of LPB and HPB. The functional DEC-network in LPB defines a mechanism for early flowering as a means for avoiding the drought-induced depletion of photosynthate needed for reproductive growth. Its impact is likely through the timely establishment of stronger source-sink dynamics that sustains a robust reproductive transition under drought.
Collapse
Affiliation(s)
- Jacobo Sanchez
- Dep. of Plant and Soil Science, Texas Tech Univ., Lubbock, TX, USA
| | | | | | | | - Ai Kitazumi
- Dep. of Plant and Soil Science, Texas Tech Univ., Lubbock, TX, USA
| | - Nitika Sandhu
- International Rice Research Institute, Los Banos, Philippines
- Current address: School of Agricultural Biotechnology, Punjab Agricultural Univ., Ludhiana, India
| | | | - Arvind Kumar
- International Rice Research Institute, Los Banos, Philippines
- Current address: International Crops Research Institute for the Semi-Arid Tropics, Petancheru, India
| | | |
Collapse
|
3
|
Verma V, Vishal B, Kohli A, Kumar PP. Systems-based rice improvement approaches for sustainable food and nutritional security. PLANT CELL REPORTS 2021; 40:2021-2036. [PMID: 34591154 DOI: 10.1007/s00299-021-02790-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
An integrated research approach to ensure sustainable rice yield increase of a crop grown by 25% of the world's farmers in 10% of cropland is essential for global food security. Rice, being a global staple crop, feeds about 56% of the world population and sustains 40% of the world's poor. At ~ $200 billion, it also accounts for 13% of the annual crop value. With hunger and malnutrition rampant among the poor, rice research for development is unique in global food and nutrition security. A systems-based, sustainable increase in rice quantity and quality is imperative for environmental and biodiversity benefits. Upstream 'discovery' through biotechnology, midstream 'development' through breeding and agronomy, downstream 'dissemination and deployment' must be 'demand-driven' for 'distinct socio-economic transformational impacts'. Local agro-ecology and livelihood nexus must drive the research agenda for targeted benefits. This necessitates sustained long-term investments by government, non-government and private sectors to secure the future food, nutrition, environment, prosperity and equity status.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| | - Bhushan Vishal
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Republic of Singapore
| | - Ajay Kohli
- Strategic Innovation Platform, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
4
|
Bahmani M, O’Lone CE, Juhász A, Nye-Wood M, Dunn H, Edwards IB, Colgrave ML. Application of Mass Spectrometry-Based Proteomics to Barley Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8591-8609. [PMID: 34319719 PMCID: PMC8389776 DOI: 10.1021/acs.jafc.1c01871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Barley (Hordeum vulgare) is the fourth most cultivated crop in the world in terms of production volume, and it is also the most important raw material of the malting and brewing industries. Barley belongs to the grass (Poaceae) family and plays an important role in food security and food safety for both humans and livestock. With the global population set to reach 9.7 billion by 2050, but with less available and/or suitable land for agriculture, the use of biotechnology tools in breeding programs are of considerable importance in the quest to meet the growing food gap. Proteomics as a member of the "omics" technologies has become popular for the investigation of proteins in cereal crops and particularly barley and its related products such as malt and beer. This technology has been applied to study how proteins in barley respond to adverse environmental conditions including abiotic and/or biotic stresses, how they are impacted during food processing including malting and brewing, and the presence of proteins implicated in celiac disease. Moreover, proteomics can be used in the future to inform breeding programs that aim to enhance the nutritional value and broaden the application of this crop in new food and beverage products. Mass spectrometry analysis is a valuable tool that, along with genomics and transcriptomics, can inform plant breeding strategies that aim to produce superior barley varieties. In this review, recent studies employing both qualitative and quantitative mass spectrometry approaches are explored with a focus on their application in cultivation, manufacturing, processing, quality, and the safety of barley and its related products.
Collapse
Affiliation(s)
- Mahya Bahmani
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Clare E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Hugh Dunn
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Ian B. Edwards
- Edstar
Genetics Pty Ltd, SABC - Loneragan Building, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
- Phone: +61-7-3214-2697. . Fax: +61-7-3214-2900
| |
Collapse
|
5
|
Gotarkar D, Longkumer T, Yamamoto N, Nanda AK, Iglesias T, Li L, Miro B, Blanco Gonzalez E, Montes Bayon M, Olsen KM, Hsing YC, Kohli A. A drought-responsive rice amidohydrolase is the elusive plant guanine deaminase with the potential to modulate the epigenome. PHYSIOLOGIA PLANTARUM 2021; 172:1853-1866. [PMID: 33749847 PMCID: PMC8360030 DOI: 10.1111/ppl.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/16/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Drought stress in plants causes differential expression of numerous genes. One of these differentially expressed genes in rice is a specific amidohydrolase. We characterized this amidohydrolase gene on the rice chromosome 12 as the first plant guanine deaminase (OsGDA1). The biochemical activity of GDA is known from tea and coffee plants where its catalytic product, xanthine, is the precursor for theine and caffeine. However, no plant gene that is coding for GDA is known so far. Recombinant OsGDA1 converted guanine to xanthine in vitro. Measurement of guanine and xanthine contents in the OsGDA1 knockout (KO) line and in the wild type Tainung 67 rice plants also suggested GDA activity in vivo. The content of cellular xanthine is important because of its catabolic products allantoin, ureides, and urea which play roles in water and nitrogen stress tolerance among others. The identification of OsGDA1 fills a critical gap in the S-adenosyl-methionine (SAM) to xanthine pathway. SAM is converted to S-adenosyl-homocysteine (SAH) and finally to xanthine. SAH is a potent inhibitor of DNA methyltransferases, the reduction of which leads to increased DNA methylation and gene silencing in Arabidopsis. We report that the OsGDA1 KO line exhibited a decrease in SAM, SAH and adenosine and an increase in rice genome methylation. The OsGDA1 protein phylogeny combined with mutational protein destabilization analysis suggested artificial selection for null mutants, which could affect genome methylation as in the KO line. Limited information on genes that may affect epigenetics indirectly requires deeper insights into such a role and effect of purine catabolism and related genetic networks.
Collapse
Affiliation(s)
- Dhananjay Gotarkar
- Strategic Innovation PlatformInternational Rice Research InstituteMakatiPhilippines
| | | | - Naoki Yamamoto
- Strategic Innovation PlatformInternational Rice Research InstituteMakatiPhilippines
| | - Amrit Kaur Nanda
- Strategic Innovation PlatformInternational Rice Research InstituteMakatiPhilippines
| | - Tamara Iglesias
- Faculty of Chemistry, Department of Physical and Analytical ChemistryUniversity of OviedoOviedoAsturiasSpain
| | - Lin‐Feng Li
- Department of BiologyWashington UniversitySt. LouisMissouriUSA
| | - Berta Miro
- Strategic Innovation PlatformInternational Rice Research InstituteMakatiPhilippines
| | - Elisa Blanco Gonzalez
- Faculty of Chemistry, Department of Physical and Analytical ChemistryUniversity of OviedoOviedoAsturiasSpain
| | - Maria Montes Bayon
- Faculty of Chemistry, Department of Physical and Analytical ChemistryUniversity of OviedoOviedoAsturiasSpain
| | | | | | - Ajay Kohli
- Strategic Innovation PlatformInternational Rice Research InstituteMakatiPhilippines
| |
Collapse
|
6
|
Melandri G, AbdElgawad H, Floková K, Jamar DC, Asard H, Beemster GTS, Ruyter-Spira C, Bouwmeester HJ. Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses. PLANTA 2021; 254:13. [PMID: 34173050 PMCID: PMC8233253 DOI: 10.1007/s00425-021-03659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/08/2021] [Indexed: 05/14/2023]
Abstract
Sugar-mediated osmotic acclimation and a strong antioxidative response reduce drought-induced biomass loss at the vegetative stage in rice. A clear understanding of the physiological and biochemical adaptations to water limitation in upland and aerobic rice can help to identify the mechanisms underlying their tolerance to low water availability. In this study, three indica rice varieties-IR64 (lowland), Apo (aerobic), and UPL Ri-7 (upland)-, that are characterized by contrasting levels of drought tolerance, were exposed to drought at the vegetative stage. Drought-induced changes in biomass, leaf metabolites and oxidative stress markers/enzyme activities were analyzed in each variety at multiple time points. The two drought-tolerant varieties, Apo and UPL Ri-7 displayed a reduced water use in contrast to the susceptible variety IR64 that displayed high water consumption and consequent strong leaf dehydration upon drought treatment. A sugar-mediated osmotic acclimation in UPL Ri-7 and a strong antioxidative response in Apo were both effective in limiting the drought-induced biomass loss in these two varieties, while biomass loss was high in IR64, also after recovery. A qualitative comparison of these results with the ones of a similar experiment conducted in the field at the reproductive stage showed that only Apo, which also in this stage showed the highest antioxidant power, was able to maintain a stable grain yield under stress. Our results show that different metabolic and antioxidant adaptations confer drought tolerance to aerobic and upland rice varieties in the vegetative stage. The effectiveness of these adaptations differs between developmental stages. Unraveling the genetic control of these mechanisms might be exploited in breeding for new rice varieties adapted to water-limited environments.
Collapse
Affiliation(s)
- Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Antwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Kristýna Floková
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Palacký University, Olomouc, Czech Republic
| | - Diaan C Jamar
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Antwerp, Belgium
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Antwerp, Belgium
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Rodríguez-Calcerrada J, Rodrigues AM, António C, Perdiguero P, Pita P, Collada C, Li M, Gil L. Stem metabolism under drought stress - a paradox of increasing respiratory substrates and decreasing respiratory rates. PHYSIOLOGIA PLANTARUM 2021; 172:391-404. [PMID: 32671841 DOI: 10.1111/ppl.13145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Metabolic changes underpinning drought-induced variations in stem respiration (Rs ) are unknown. We measured Rs rates and metabolite and gene expression profiles in Ulmus minor Mill. and Quercus ilex L. seedlings subjected to increasing levels of drought stress to better understand how carbon, nitrogen and energy metabolism interact during drought. In both species, only plants showing extreme stress symptoms - i.e. negligible rates of leaf stomatal conductance and photosynthesis, and high stem dehydration (30-50% of maximum water storage) and contraction (50-150 μm week-1 ) - exhibited lower Rs rates than well-watered plants. Abundance of low-molecular weight sugars (e.g. glucose and fructose) and sugar alcohols (e.g. mannitol) increased with drought, at more moderate stress and to a higher extent in Q. ilex than U. minor. Abundance of amino acids increased at more severe stress, more abruptly, and to a higher extent in U. minor, coinciding with leaf senescence, which did not occur in Q. ilex. Organic acids changed less in response to drought: threonate and glycerate increased, and citrate decreased although slightly in both species. Transcripts of genes coding for enzymes of the Krebs cycle decreased in Q. ilex and increased in U. minor in conditions of extreme drought stress. The maintenance of Rs under severe growth and photosynthetic restrictions reveals the importance of stem mitochondrial activity in drought acclimation. The eventual decline in Rs diverts carbon substrates from entering the Krebs cycle that may help to cope with osmotic and oxidative stress during severe drought and to recover hydraulic functionality afterwards.
Collapse
Affiliation(s)
- Jesús Rodríguez-Calcerrada
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Ana M Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, 2780-157, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, 2780-157, Portugal
| | - Pedro Perdiguero
- Animal Health Research Center, National Institute for Agriculture and Food Research and Technology (CISA-INIA), Valdeolmos, Madrid, 28130, Spain
| | - Pilar Pita
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Carmen Collada
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Meng Li
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Luis Gil
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
8
|
Cushman KR, Pabuayon ICM, Hinze LL, Sweeney ME, de los Reyes BG. Networks of Physiological Adjustments and Defenses, and Their Synergy With Sodium (Na +) Homeostasis Explain the Hidden Variation for Salinity Tolerance Across the Cultivated Gossypium hirsutum Germplasm. FRONTIERS IN PLANT SCIENCE 2020; 11:588854. [PMID: 33363555 PMCID: PMC7752944 DOI: 10.3389/fpls.2020.588854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The abilities to mobilize and/or sequester excess ions within and outside the plant cell are important components of salt-tolerance mechanisms. Mobilization and sequestration of Na+ involves three transport systems facilitated by the plasma membrane H+/Na+ antiporter (SOS1), vacuolar H+/Na+ antiporter (NHX1), and Na+/K+ transporter in vascular tissues (HKT1). Many of these mechanisms are conserved across the plant kingdom. While Gossypium hirsutum (upland cotton) is significantly more salt-tolerant relative to other crops, the critical factors contributing to the phenotypic variation hidden across the germplasm have not been fully unraveled. In this study, the spatio-temporal patterns of Na+ accumulation along with other physiological and biochemical interactions were investigated at different severities of salinity across a meaningful genetic diversity panel across cultivated upland Gossypium. The aim was to define the importance of holistic or integrated effects relative to the direct effects of Na+ homeostasis mechanisms mediated by GhHKT1, GhSOS1, and GhNHX1. Multi-dimensional physio-morphometric attributes were investigated in a systems-level context using univariate and multivariate statistics, randomForest, and path analysis. Results showed that mobilized or sequestered Na+ contributes significantly to the baseline tolerance mechanisms. However, the observed variance in overall tolerance potential across a meaningful diversity panel were more significantly attributed to antioxidant capacity, maintenance of stomatal conductance, chlorophyll content, and divalent cation (Mg2+) contents other than Ca2+ through a complex interaction with Na+ homeostasis. The multi-tier macro-physiological, biochemical and molecular data generated in this study, and the networks of interactions uncovered strongly suggest that a complex physiological and biochemical synergy beyond the first-line-of defense (Na+ sequestration and mobilization) accounts for the total phenotypic variance across the primary germplasm of Gossypium hirsutum. These findings are consistent with the recently proposed Omnigenic Theory for quantitative traits and should contribute to a modern look at phenotypic selection for salt tolerance in cotton breeding.
Collapse
Affiliation(s)
- Kevin R. Cushman
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Isaiah C. M. Pabuayon
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Lori L. Hinze
- USDA-ARS, Crop Germplasm Research, College Station, TX, United States
| | | | | |
Collapse
|
9
|
Kohli A, Miro B, Balié J, d’A Hughes J. Photosynthesis research: a model to bridge fundamental science, translational products, and socio-economic considerations in agriculture. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2281-2298. [PMID: 32076700 PMCID: PMC7135011 DOI: 10.1093/jxb/eraa087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/19/2020] [Indexed: 05/04/2023]
Abstract
Despite impressive success in molecular physiological understanding of photosynthesis, and preliminary evidence on its potential for quantum shifts in agricultural productivity, the question remains of whether increased photosynthesis, without parallel fine-tuning of the associated processes, is enough. There is a distinct lack of formal socio-economic impact studies that address the critical questions of product profiling, cost-benefit analysis, environmental trade-offs, and technological and market forces in product acceptability. When a relatively well understood process gains enough traction for translational value, its broader scientific and technical gap assessment, in conjunction with its socio-economic impact assessment for success, should be a prerequisite. The successes in the upstream basic understanding of photosynthesis should be integrated with a gap analysis for downstream translational applications to impact the farmers' and customers' lifestyles and livelihoods. The purpose of this review is to assess how the laboratory, the field, and the societal demands from photosynthesis could generate a transformative product. Two crucial recommendations from the analysis of the state of knowledge and potential ways forward are (i) the formulation of integrative mega-projects, which span the multistakeholder spectrum, to ensure rapid success in harnessing the transformative power of photosynthesis; and (ii) stipulating spatiotemporal, labour, and economic criteria to stage-gate deliverables.
Collapse
Affiliation(s)
- Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Berta Miro
- International Rice Research Institute, Los Baños, Philippines
| | - Jean Balié
- International Rice Research Institute, Los Baños, Philippines
| | | |
Collapse
|
10
|
Henry A, Stuart-Williams H, Dixit S, Kumar A, Farquhar G. Stomatal conductance responses to evaporative demand conferred by rice drought-yield quantitative trait locus qDTY 12.1. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:660-669. [PMID: 32172773 PMCID: PMC7734198 DOI: 10.1071/fp18126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 03/02/2019] [Indexed: 05/24/2023]
Abstract
Rice quantitative trait locus (QTL) qDTY12.1 is a major-effect drought yield QTL that was identified from a cross of Vandana (recipient parent) and Way Rarem (donor parent) through breeding efforts to improve rice yield under upland drought stress conditions. The two main physiological effects previously observed to be related to the presence of qDTY12.1 were (i) increased lateral root growth, and (ii) increased transpiration efficiency. Since relatively more progress has thus far been made on characterising the lateral root growth response related to qDTY12.1, the present study focussed on characterising how qDTY12.1 confers higher transpiration efficiency under upland drought stress in the Vandana background. In a series of field experiments in which stomatal conductance was measured across different times of day in four qDTY12.1 near isogenic lines (NILs), the NILs and Way Rarem showed consistently higher stomatal conductance than Vandana under conditions of low vapour pressure deficit (VPD) and low photosynthetically active radiation (PAR), and consistently lower stomatal conductance than Vandana under high VPD and high PAR. Leaf δ18O was higher in the qDTY12.1 NIL than in Vandana, and although this trend was previously observed for leaf δ13C it appeared to be more consistent across measurement dates and treatments for leaf δ18O. The qDTY12.1 NILs and Way Rarem tended to show greater large vein to small vein interveinal distance and mesophyll area than Vandana, also consistent across treatments. In terms of aquaporin-related plant hydraulics, variation among NILs in terms of aquaporin inhibition of root hydraulic conductivity (Lpr) was observed, with the highest-yielding NIL showing a lack of Lpr inhibition similar to Way Rarem. The results reported here suggest that the effects of qDTY12.1 are in response not only to soil moisture, but also to atmospheric conditions. An interaction among multiple mechanisms including leaf anatomy and aquaporin function appear to confer the transpiration efficiency effect of qDTY12.1.
Collapse
Affiliation(s)
- Amelia Henry
- International Rice Research Institute, DAPO Box 7777 Metro Manila, Philippines; and Corresponding author.
| | - Hilary Stuart-Williams
- Research School of Biology, Robertson Building (46), Sullivan's Creek Road, Australian National University, Canberra, ACT 2601, Australia
| | - Shalabh Dixit
- International Rice Research Institute, DAPO Box 7777 Metro Manila, Philippines
| | - Arvind Kumar
- International Rice Research Institute, DAPO Box 7777 Metro Manila, Philippines
| | - Graham Farquhar
- Research School of Biology, Robertson Building (46), Sullivan's Creek Road, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Rodziewicz P, Chmielewska K, Sawikowska A, Marczak Ł, Łuczak M, Bednarek P, Mikołajczak K, Ogrodowicz P, Kuczyńska A, Krajewski P, Stobiecki M. Identification of drought responsive proteins and related proteomic QTLs in barley. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2823-2837. [PMID: 30816960 PMCID: PMC6506773 DOI: 10.1093/jxb/erz075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/11/2019] [Indexed: 05/08/2023]
Abstract
Drought is a major abiotic stress that negatively influences crop yield. Breeding strategies for improved drought resistance require an improved knowledge of plant drought responses. We therefore applied drought to barley recombinant inbred lines and their parental genotypes shortly before tillering. A large-scale proteomic analysis of leaf and root tissue revealed proteins that respond to drought in a genotype-specific manner. Of these, Rubisco activase in chloroplast, luminal binding protein in endoplasmic reticulum, phosphoglycerate mutase, glutathione S-transferase, heat shock proteins and enzymes involved in phenylpropanoid biosynthesis showed strong genotype×environment interactions. These data were subjected to genetic linkage analysis and the identification of proteomic QTLs that have potential value in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Paweł Rodziewicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Klaudia Chmielewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Magdalena Łuczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Krzysztof Mikołajczak
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
- Correspondence: or
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
- Correspondence: or
| |
Collapse
|
12
|
Lawas LMF, Li X, Erban A, Kopka J, Jagadish SVK, Zuther E, Hincha DK. Metabolic responses of rice cultivars with different tolerance to combined drought and heat stress under field conditions. Gigascience 2019; 8:giz050. [PMID: 31081890 PMCID: PMC6511916 DOI: 10.1093/gigascience/giz050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rice is susceptible to both drought and heat stress, in particular during flowering and grain filling, when both grain yield and quality may be severely compromised. However, under field conditions, these 2 stresses rarely occur separately. Under well-watered conditions, plants avoid heat stress by transpirational cooling, while this is not possible under drought conditions. Although investigating combined drought and heat stress is clearly more agronomically relevant than analyzing the effects of the single stresses, only a few studies of this stress combination, in particular under field conditions, have been published. RESULTS Three rice cultivars differing in drought and heat tolerance were grown in the field under control and drought conditions in 3 consecutive years. Drought was applied either during flowering or during early grain filling and resulted in simultaneous heat stress, leading to reduced grain yield and quality. Analysis by gas chromatography-mass spectrometry showed distinct metabolic profiles for the 3 investigated organs (flag leaves, flowering spikelets, developing seeds). The metabolic stress responses of the plants also strongly differed between cultivars and organs. Correlation analysis identified potential metabolic markers for grain yield and quality under combined drought and heat stress from both stress-regulated metabolites and from metabolites with constitutive differences between the cultivars. CONCLUSIONS Gas chromatography-mass spectrometry resolved metabolic responses to combined drought and heat stress in different organs of field-grown rice. The metabolite profiles can be used to identify potential marker metabolites for yield stability and grain quality that are expected to improve breeding efforts towards developing rice cultivars that are resilient to climate change.
Collapse
Affiliation(s)
- Lovely Mae F Lawas
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Xia Li
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - S V Krishna Jagadish
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Department of Agronomy, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
13
|
Casartelli A, Riewe D, Hubberten HM, Altmann T, Hoefgen R, Heuer S. Exploring traditional aus-type rice for metabolites conferring drought tolerance. RICE (NEW YORK, N.Y.) 2018; 11:9. [PMID: 29372429 PMCID: PMC5785456 DOI: 10.1186/s12284-017-0189-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/22/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. RESULTS The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. CONCLUSIONS The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.
Collapse
Affiliation(s)
- Alberto Casartelli
- School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Adelaide, SA Australia
| | - David Riewe
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | | | - Thomas Altmann
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sigrid Heuer
- School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Adelaide, SA Australia
- Rothamsted Research, Harpenden, UK
| |
Collapse
|
14
|
Dhakarey R, Raorane ML, Treumann A, Peethambaran PK, Schendel RR, Sahi VP, Hause B, Bunzel M, Henry A, Kohli A, Riemann M. Physiological and Proteomic Analysis of the Rice Mutant cpm2 Suggests a Negative Regulatory Role of Jasmonic Acid in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1903. [PMID: 29250082 PMCID: PMC5715382 DOI: 10.3389/fpls.2017.01903] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/20/2017] [Indexed: 05/18/2023]
Abstract
It is widely known that numerous adaptive responses of drought-stressed plants are stimulated by chemical messengers known as phytohormones. Jasmonic acid (JA) is one such phytohormone. But there are very few reports revealing its direct implication in drought related responses or its cross-talk with other phytohormones. In this study, we compared the morpho-physiological traits and the root proteome of a wild type (WT) rice plant with its JA biosynthesis mutant coleoptile photomorphogenesis 2 (cpm2), disrupted in the allene oxide cyclase (AOC) gene, for insights into the role of JA under drought. The mutant had higher stomatal conductance, higher water use efficiency and higher shoot ABA levels under severe drought as compared to the WT. Notably, roots of cpm2 were better developed compared to the WT under both, control and drought stress conditions. Root proteome was analyzed using the Tandem Mass Tag strategy to better understand this difference at the molecular level. Expectedly, AOC was unique but notably highly abundant under drought in the WT. Identification of other differentially abundant proteins (DAPs) suggested increased energy metabolism (i.e., increased mobilization of resources) and reactive oxygen species scavenging in cpm2 under drought. Additionally, various proteins involved in secondary metabolism, cell growth and cell wall synthesis were also more abundant in cpm2 roots. Proteome-guided transcript, metabolite, and histological analyses provided further insights into the favorable adaptations and responses, most likely orchestrated by the lack of JA, in the cpm2 roots. Our results in cpm2 are discussed in the light of JA crosstalk to other phytohormones. These results together pave the path for understanding the precise role of JA during drought stress in rice.
Collapse
Affiliation(s)
- Rohit Dhakarey
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
- International Rice Research Institute, Los Baños, Philippines
| | - Manish L. Raorane
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
- International Rice Research Institute, Los Baños, Philippines
| | - Achim Treumann
- Newcastle University Protein and Proteome Analysis, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Rachel R. Schendel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Vaidurya P. Sahi
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bettina Hause
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amelia Henry
- International Rice Research Institute, Los Baños, Philippines
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Michael Riemann
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
15
|
Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, António C, Trindade H. Cowpea ( Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield. FRONTIERS IN PLANT SCIENCE 2017; 8:586. [PMID: 28473840 PMCID: PMC5397532 DOI: 10.3389/fpls.2017.00586] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/31/2017] [Indexed: 05/12/2023]
Abstract
Plants usually tolerate drought by producing organic solutes, which can either act as compatible osmolytes for maintaining turgor, or radical scavengers for protecting cellular functions. However, these two properties of organic solutes are often indistinguishable during stress progression. This study looked at individualizing properties of osmotic adjustment vs. osmoprotection in plants, using cowpea as the model species. Two cultivars were grown in well-watered soil, drought conditions, or drought followed by rewatering through fruit formation. Osmoadaptation was investigated in leaves and roots using photosynthetic traits, water homoeostasis, inorganic ions, and primary and secondary metabolites. Multifactorial analyses indicated allocation of high quantities of amino acids, sugars, and proanthocyanidins into roots, presumably linked to their role in growth and initial stress perception. Physiological and metabolic changes developed in parallel and drought/recovery responses showed a progressive acclimation of the cowpea plant to stress. Of the 88 metabolites studied, proline, galactinol, and a quercetin derivative responded the most to drought as highlighted by multivariate analyses, and their correlations with yield indicated beneficial effects. These metabolites accumulated differently in roots, but similarly in leaves, suggesting a more conservative strategy to cope with drought in the aerial parts. Changes in these compounds roughly reflected energy investment in protective mechanisms, although the ability of plants to adjust osmotically through inorganic ions uptake could not be discounted.
Collapse
Affiliation(s)
- Piebiep Goufo
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
- *Correspondence: Piebiep Goufo
| | - José M. Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
| | - Tiago F. Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| | - Carlos M. Correia
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
| | - Manuela R. Oliveira
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e VeterináriaOeiras, Portugal
| | - Eduardo A. S. Rosa
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| | - Henrique Trindade
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
| |
Collapse
|
16
|
Jagadish KSV, Kavi Kishor PB, Bahuguna RN, von Wirén N, Sreenivasulu N. Staying Alive or Going to Die During Terminal Senescence-An Enigma Surrounding Yield Stability. FRONTIERS IN PLANT SCIENCE 2015; 6:1070. [PMID: 26648957 PMCID: PMC4663250 DOI: 10.3389/fpls.2015.01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
Breeding programs with the aim to enhance yield productivity under abiotic stress conditions during the reproductive stage of crops is a top priority in the era of climate change. However, the choice of exploring stay-green or senescence phenotypes, which represent an opposing physiological bearing, are explored in cereal breeding programs for enhanced yield stability to a different extent. Thus, the consideration of stay-green or senescence phenotypes is still an ongoing debate and has not been comprehensively addressed. In this review, we provide arguments for designing a target phenotype to mitigate abiotic stresses during pre- and post-anthesis in cereals with a focus on hormonal balances regulating stay-green phenotype versus remobilization. The two major hypothesis for grain yield improvement are (i) the importance of the stay-green trait to elevate grain number under pre-anthesis and anthesis stress and (ii) fine tuning the regulatory and molecular physiological mechanisms to accelerate nutrient remobilization to optimize grain quality and seed weight under post-anthesis stress. We highlight why a cautious balance in the phenotype design is essential. While stay-green phenotypes promise to be ideal for developing stress-tolerant lines during pre-anthesis and fertilization to enhance grain number and yield per se, fine-tuning efficient remobilizing behavior during seed filling might optimize grain weight, grain quality and nutrient efficiency. The proposed model provides novel and focused directions for cereal stress breeding programs to ensure better seed-set and efficient grain-filling in cereals under terminal drought and heat stress exposure.
Collapse
Affiliation(s)
| | | | | | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute, Metro Manila, Philippines
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
17
|
Dixit S, Kumar Biswal A, Min A, Henry A, Oane RH, Raorane ML, Longkumer T, Pabuayon IM, Mutte SK, Vardarajan AR, Miro B, Govindan G, Albano-Enriquez B, Pueffeld M, Sreenivasulu N, Slamet-Loedin I, Sundarvelpandian K, Tsai YC, Raghuvanshi S, Hsing YIC, Kumar A, Kohli A. Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Sci Rep 2015; 5:15183. [PMID: 26507552 PMCID: PMC4623671 DOI: 10.1038/srep15183] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
Sub-QTLs and multiple intra-QTL genes are hypothesized to underpin large-effect QTLs. Known QTLs over gene families, biosynthetic pathways or certain traits represent functional gene-clusters of genes of the same gene ontology (GO). Gene-clusters containing genes of different GO have not been elaborated, except in silico as coexpressed genes within QTLs. Here we demonstrate the requirement of multiple intra-QTL genes for the full impact of QTL qDTY12.1 on rice yield under drought. Multiple evidences are presented for the need of the transcription factor 'no apical meristem' (OsNAM12.1) and its co-localized target genes of separate GO categories for qDTY12.1 function, raising a regulon-like model of genetic architecture. The molecular underpinnings of qDTY12.1 support its effectiveness in further improving a drought tolerant genotype and for its validity in multiple genotypes/ecosystems/environments. Resolving the combinatorial value of OsNAM12.1 with individual intra-QTL genes notwithstanding, identification and analyses of qDTY12.1has fast-tracked rice improvement towards food security.
Collapse
Affiliation(s)
- Shalabh Dixit
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Akshaya Kumar Biswal
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Aye Min
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Amelia Henry
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Rowena H. Oane
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Manish L. Raorane
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Toshisangba Longkumer
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Isaiah M. Pabuayon
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Sumanth K. Mutte
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Adithi R. Vardarajan
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Berta Miro
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Ganesan Govindan
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Blesilda Albano-Enriquez
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Mandy Pueffeld
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 03, 06466 Gatersleben, Germany
| | - Nese Sreenivasulu
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 03, 06466 Gatersleben, Germany
| | - Inez Slamet-Loedin
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | | | - Yuan-Ching Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Yue-Ie C. Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Arvind Kumar
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| | - Ajay Kohli
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777, Metro Manila-1226, Philippines
| |
Collapse
|