1
|
Dharsini VD, Subramanian A, Premalatha N, Boopathi NM, Djanaguiraman M, Santhanakrishnan VP. Fertile grounds: exploring male sterility in cotton and its marker development. Mol Biol Rep 2024; 51:961. [PMID: 39235637 DOI: 10.1007/s11033-024-09893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
The high cost of producing conventional hybrid cotton seeds led to more research efforts on cotton male sterility systems. There is a lack of studies on cytology, histology, morphological variation, yield, and altered restorer backgrounds to identify and develop male sterility markers in cotton hybrids. Hybrid cotton can be efficiently produced by exploiting genetic male sterility. Among the 19 Genetic Male Sterility (GMS) genes discovered, the lines with ms5ms6 genes are mostly utilised to establish successful hybrid cotton in India. Molecular markers closely associated with the MS alleles are identified to facilitate the efficient and rapid backcrossing of male-sterility genes into elite lines or cultivars by marker-assisted backcrossing. The majority of the markers which are random DNA markers (RDMs), are probably lost, when recombination occurs. In contradiction, molecular markers (functional markers, or FMs) within the genic region can be identified and employed in crops for diverse traits, if prospective characteristic genes are known. In this review, the mechanism of male sterility, its gene expression level, and the need for functional markers for the male sterility trait in cotton have been put forward.
Collapse
Affiliation(s)
- V Deepa Dharsini
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - A Subramanian
- Department of Cotton, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - N Premalatha
- Department of Cotton, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - N Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Djanaguiraman
- Department of Crop Physiology, Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - V P Santhanakrishnan
- Department of Medicinal and Aromatic Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Li L, Sun Z, Zhang Y, Ke H, Yang J, Li Z, Wu L, Zhang G, Wang X, Ma Z. Development and Utilization of Functional Kompetitive Allele-Specific PCR Markers for Key Genes Underpinning Fiber Length and Strength in Gossypium hirsutum L. FRONTIERS IN PLANT SCIENCE 2022; 13:853827. [PMID: 35360312 PMCID: PMC8964280 DOI: 10.3389/fpls.2022.853827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 05/16/2023]
Abstract
Fiber length (FL) and fiber strength (FS) are the important indicators of fiber quality in cotton. Longer and stronger fibers are preferred for manufacturing finer yarns in the textile industry. Functional markers (FMs) designed from polymorphic sites within gene sequences attributing to phenotypic variation are highly efficient when used for marker-assisted selection (MAS) in breeding superior varieties with longer FL and higher FS. The aims of this study were to develop FMs via kompetitive allele-specific PCR (KASP) assays and to validate the efficacy of the FMs for allele discrimination and the potential value in practice application. We used four single-nucleotide polymorphism markers and 360 cotton accessions and found that two FMs, namely, D11_24030087 and A07_72204443, could effectively differentiate accessions of different genotypes with higher consistency to phenotype. The appeared frequencies of varieties harbored Hap2 (elite alleles G and T) with longer FL (> the mean of accessions with non-elite allele, 28.50 mm) and higher FS (> the mean of accessions with non-elite allele, 29.06 cN•tex-1) were 100 and 72.7%, respectively, which was higher than that of varieties harbored only on a single elite allele (G or T, 77.9 or 61.9%), suggesting a favorable haplotype for selecting varieties with superior FL and FS. These FMs could be valuable for the high-throughput selection of superior materials by providing genotypic information in cotton breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Ding F, Li H, Wang J, Peng H, Chen H, Hu F, Lai B, Wei Y, Ma W, Li H, He X, Zhang S. Development of molecular markers based on the promoter difference of LcFT1 to discriminate easy- and difficult-flowering litchi germplasm resources and its application in crossbreeding. BMC PLANT BIOLOGY 2021; 21:539. [PMID: 34784881 PMCID: PMC8594225 DOI: 10.1186/s12870-021-03309-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Litchi is a well-known subtropical fruit crop. However, irregular bearing attributed to unstable flowering is a major ongoing problem for the development of the litchi industry. In a previous study, our laboratory proved that litchi flowering was induced by low temperature and that a FLOWERING LOCUS T (FT) homologue gene named LcFT1 played a pivotal role in this process. The present study aimed to understand the natural variation in FT among litchi germplasm resources and designed markers to verify easy- and difficult-flowering litchi germplasms. A grafting experiment was also carried out to explore whether it could shorten the seedling stage of litchi seedlings. RESULTS Two types of LcFT1 promoter existed in different litchi germplasm resources, and we named them the 'easy-flowering type of LcFT1 promoter' and 'difficult-flowering type of LcFT1 promoter', which resulted in three different LcFT1 genotypes of litchi germplasm resources, including the homozygous easy-flowering type of the LcFT1 genotype, homozygous difficult-flowering type of the LcFT1 genotype and heterozygous LcFT1 genotype of litchi germplasm resources. The homozygous easy-flowering type of the LcFT1 genotype and heterozygous LcFT1 genotype of the litchi germplasm resources completed their floral induction more easily than the homozygous difficult-flowering type of the LcFT1 genotype of litchi germplasm resources. Herein, we designed two kinds of efficient molecular markers based on the difference in LcFT1 promoter sequences and applied them to identify of the easy- and difficult-flowering litchi germplasm resources. These two kinds of molecular markers were capable of clearly distinguishing the easy- from difficult-flowering litchi germplasm resources at the seedling stage and provided the same results. Meanwhile, grafting the scion of seedlings to the annual branches of adult litchi trees could significantly shorten the seedling stage. CONCLUSIONS Understanding the flowering characteristics of litchi germplasm resources is essential for easy-flowering litchi breeding. In the present study, molecular markers provide a rapid and accurate approach for identifying the flowering characteristics. The application of these molecular markers not only significantly shortened the artificial crossbreeding cycle of easy-flowering litchi cultivars but also greatly saved manpower, material resources and land.
Collapse
Affiliation(s)
- Feng Ding
- Guangxi Crop Genetic Improvement and Biotechnology Key Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Haoran Li
- Guangxi Crop Genetic Improvement and Biotechnology Key Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Jinying Wang
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongxiang Peng
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Houbin Chen
- Horticulture College, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Fuchu Hu
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Hainan Provincial Key Laboratory of Tropical Fruit Tree Biology, Haikou, 510642, Hainan, China
| | - Biao Lai
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Yongzan Wei
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Wuqiang Ma
- College of Horticulture, Hainan University, Haikou, 570228, Hainan, China
| | - Hongli Li
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xinhua He
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shuwei Zhang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| |
Collapse
|
4
|
Han Y, Zhao F, Gao S, Wang X, Wei A, Chen Z, Liu N, Tong X, Fu X, Wen C, Zhang Z, Wang N, Du S. Fine mapping of a male sterility gene ms-3 in a novel cucumber (Cucumis sativus L.) mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:449-460. [PMID: 29134240 PMCID: PMC5787221 DOI: 10.1007/s00122-017-3013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/26/2017] [Indexed: 05/04/2023]
Abstract
The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber. A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.
Collapse
Affiliation(s)
- Yike Han
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, Tianjin, 300192, China
| | - Fengyue Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shang Gao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xianyun Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Aimin Wei
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, Tianjin, 300192, China
| | - Zhengwu Chen
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, Tianjin, 300192, China
| | - Nan Liu
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, Tianjin, 300192, China
| | - Xueqiang Tong
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinmeng Fu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ningning Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shengli Du
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, Tianjin, 300192, China.
| |
Collapse
|
5
|
Saski CA, Scheffler BE, Hulse-Kemp AM, Liu B, Song Q, Ando A, Stelly DM, Scheffler JA, Grimwood J, Jones DC, Peterson DG, Schmutz J, Chen ZJ. Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum L.) genome, and an approach toward reference-grade assemblies of polyploids. Sci Rep 2017; 7:15274. [PMID: 29127298 PMCID: PMC5681701 DOI: 10.1038/s41598-017-14885-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2017] [Indexed: 01/06/2023] Open
Abstract
Like those of many agricultural crops, the cultivated cotton is an allotetraploid and has a large genome (~2.5 gigabase pairs). The two sub genomes, A and D, are highly similar but unequally sized and repeat-rich, which pose significant challenges for accurate genome reconstruction using standard approaches. Here we report the development of BAC libraries, sub genome specific physical maps, and a new-generation sequencing approach that will lead to a reference-grade genome assembly for Upland cotton. Three BAC libraries were constructed, fingerprinted, and integrated with BAC-end sequences (BES) to produce a de novo whole-genome physical map. The BAC map was partitioned by sub genomes through alignment to the diploid progenitor D-genome reference sequence with densely spaced BES anchor points and computational filtering. The physical maps were validated with FISH and genetic mapping of SNP markers derived from BES. Two pairs of homeologous chromosomes, A11/D11 and A12/D12, were used to assess multiplex sequencing approaches for completeness and scalability. The results represent the first sub genome anchored physical maps of Upland cotton, and a new-generation approach to the whole-genome sequencing, which will lead to the reference-grade assembly of allopolyploid cotton and serve as a general strategy for sequencing other polyploid species.
Collapse
Affiliation(s)
| | - Brian E Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS, USA
| | - Amanda M Hulse-Kemp
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Bo Liu
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Qingxin Song
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA
| | - Atsumi Ando
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Don C Jones
- Agriculture and Environmental Research, Cotton Incorporated, Cary, NC, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology and Department of Plant & Soil Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Z Jeffery Chen
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Hinze LL, Hulse-Kemp AM, Wilson IW, Zhu QH, Llewellyn DJ, Taylor JM, Spriggs A, Fang DD, Ulloa M, Burke JJ, Giband M, Lacape JM, Van Deynze A, Udall JA, Scheffler JA, Hague S, Wendel JF, Pepper AE, Frelichowski J, Lawley CT, Jones DC, Percy RG, Stelly DM. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC PLANT BIOLOGY 2017; 17:37. [PMID: 28158969 PMCID: PMC5291959 DOI: 10.1186/s12870-017-0981-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/23/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits. RESULTS The SNP markers distinctly separated G. hirsutum from other Gossypium species and distinguished the wild from cultivated types of G. hirsutum. The markers also efficiently discerned differences among cultivars, which was the primary goal when designing the CottonSNP63K array. Population structure within the genus compared favorably with previous results obtained using SSR markers, and an association study identified loci linked to factors that affect cottonseed protein content. CONCLUSIONS Our results provide a large genome-wide variation data set for primarily cultivated cotton. Thousands of SNPs in representative cotton genotypes provide an opportunity to finely discriminate among cultivated cotton from around the world. The SNPs will be relevant as dense markers of genome variation for association mapping approaches aimed at correlating molecular polymorphisms with variation in phenotypic traits, as well as for molecular breeding approaches in cotton.
Collapse
Affiliation(s)
- Lori L. Hinze
- USDA-ARS, Crop Germplasm Research Unit, College Station, TX 77845 USA
| | - Amanda M. Hulse-Kemp
- Department of Plant Sciences and Seed Biotechnology Center, University of California-Davis, Davis, CA 95616 USA
| | - Iain W. Wilson
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - Qian-Hao Zhu
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - Danny J. Llewellyn
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - Jen M. Taylor
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - Andrew Spriggs
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - David D. Fang
- USDA-ARS, Cotton Fiber Bioscience Research Unit, New Orleans, LA 70124 USA
| | - Mauricio Ulloa
- USDA-ARS, Cropping Systems Research Laboratory, Plant Stress and Germplasm Development Research Unit, Lubbock, TX 79415 USA
| | - John J. Burke
- USDA-ARS, Cropping Systems Research Laboratory, Plant Stress and Germplasm Development Research Unit, Lubbock, TX 79415 USA
| | - Marc Giband
- CIRAD, UMR AGAP, Montpellier, F34398 France
- EMBRAPA, Algodão, Nucleo Cerrado, 75.375-000 Santo Antônio de Goias, GO Brazil
| | | | - Allen Van Deynze
- Department of Plant Sciences and Seed Biotechnology Center, University of California-Davis, Davis, CA 95616 USA
| | - Joshua A. Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Jodi A. Scheffler
- USDA-ARS, Jamie Whitten Delta States Research Center, Stoneville, MS 38776 USA
| | - Steve Hague
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Alan E. Pepper
- Department of Biology, Texas A&M University, College Station, TX 77843 USA
- Interdisciplinary Department of Genetics, Texas A&M University, College Station, TX 77843 USA
| | | | - Cindy T. Lawley
- Illumina Inc., 499 Illinois Street, San Francisco, CA 94158 USA
| | - Don C. Jones
- Cotton Incorporated, Agricultural Research, Cary, NC 27513 USA
| | - Richard G. Percy
- USDA-ARS, Crop Germplasm Research Unit, College Station, TX 77845 USA
| | - David M. Stelly
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX 77843 USA
- Interdisciplinary Department of Genetics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
7
|
Kushanov FN, Pepper AE, Yu JZ, Buriev ZT, Shermatov SE, Saha S, Ulloa M, Jenkins JN, Abdukarimov A, Abdurakhmonov IY. Development, genetic mapping and QTL association of cotton PHYA, PHYB, and HY5-specific CAPS and dCAPS markers. BMC Genet 2016; 17:141. [PMID: 27776497 PMCID: PMC5078887 DOI: 10.1186/s12863-016-0448-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Among SNP markers that become increasingly valuable in molecular breeding of crop plants are the CAPS and dCAPS markers derived from the genes of interest. To date, the number of such gene-based markers is small in polyploid crop plants such as allotetraploid cotton that has A- and D-sub-genomes. The objective of this study was to develop and map new CAPS and dCAPS markers for cotton developmental-regulatory genes that are important in plant breeding programs. RESULTS Gossypium hirsutum and G. barbadense, are the two cultivated allotetraploid cotton species. These have distinct fiber quality and other agronomic traits. Using comparative sequence analysis of characterized GSTs of the PHYA1, PHYB, and HY5 genes of G. hirsutum and G. barbadense one PHYA1-specific Mbo I/Dpn II CAPS, one PHYB-specific Alu I dCAPS, and one HY5-specific Hinf I dCAPS cotton markers were developed. These markers have successfully differentiated the two allotetraploid genomes (AD1 and AD2) when tested in parental genotypes of 'Texas Marker-1' ('TM-1'), 'Pima 3-79' and their F1 hybrids. The genetic mapping and chromosome substitution line-based deletion analyses revealed that PHYA1 gene is located in A-sub-genome chromosome 11, PHYB gene is in A-sub-genome chromosome 10, and HY5 gene is in D-sub-genome chromosome 24, on the reference 'TM-1' x 'Pima 3-79' RIL genetic map. Further, it was found that genetic linkage map regions containing phytochrome and HY5-specific markers were associated with major fiber quality and flowering time traits in previously published QTL mapping studies. CONCLUSION This study detailed the genome mapping of three cotton phytochrome genes with newly developed CAPS and dCAPS markers. The proximity of these loci to fiber quality and other cotton QTL was demonstrated in two A-subgenome and one D-subgenome chromosomes. These candidate gene markers will be valuable for marker-assisted selection (MAS) programs to rapidly introgress G. barbadense phytochromes and/or HY5 gene (s) into G. hirsutum cotton genotypes or vice versa.
Collapse
Affiliation(s)
- Fakhriddin N. Kushanov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| | - Alan E. Pepper
- Department of Biology, Texas A&M University, Colleges Station, TX 77843 USA
| | - John Z. Yu
- USDA-ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845 USA
| | - Zabardast T. Buriev
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| | - Shukhrat E. Shermatov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| | - Sukumar Saha
- USDA-ARS, Crop Science Research Laboratory, Mississippi State, MS 39762 USA
| | - Mauricio Ulloa
- USDA-ARS, Plant Stress and Germplasm Development Research, 3810 4th Street, Lubbock, TX 79415 USA
| | - Johnie N. Jenkins
- USDA-ARS, Crop Science Research Laboratory, Mississippi State, MS 39762 USA
| | - Abdusattor Abdukarimov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray region Tashkent District, 111215 Uzbekistan
| |
Collapse
|
8
|
Yang S, Fresnedo-Ramírez J, Wang M, Cote L, Schweitzer P, Barba P, Takacs EM, Clark M, Luby J, Manns DC, Sacks G, Mansfield AK, Londo J, Fennell A, Gadoury D, Reisch B, Cadle-Davidson L, Sun Q. A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine. HORTICULTURE RESEARCH 2016; 3:16002. [PMID: 27257505 PMCID: PMC4879517 DOI: 10.1038/hortres.2016.2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 05/07/2023]
Abstract
Marker-assisted selection (MAS) is often employed in crop breeding programs to accelerate and enhance cultivar development, via selection during the juvenile phase and parental selection prior to crossing. Next-generation sequencing and its derivative technologies have been used for genome-wide molecular marker discovery. To bridge the gap between marker development and MAS implementation, this study developed a novel practical strategy with a semi-automated pipeline that incorporates trait-associated single nucleotide polymorphism marker discovery, low-cost genotyping through amplicon sequencing (AmpSeq) and decision making. The results document the development of a MAS package derived from genotyping-by-sequencing using three traits (flower sex, disease resistance and acylated anthocyanins) in grapevine breeding. The vast majority of sequence reads (⩾99%) were from the targeted regions. Across 380 individuals and up to 31 amplicons sequenced in each lane of MiSeq data, most amplicons (83 to 87%) had <10% missing data, and read depth had a median of 220-244×. Several strengths of the AmpSeq platform that make this approach of broad interest in diverse crop species include accuracy, flexibility, speed, high-throughput, low-cost and easily automated analysis.
Collapse
Affiliation(s)
- Shanshan Yang
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | | | - Minghui Wang
- Bioinformatics Facility, Cornell University, Ithaca, NY 14853, USA
| | - Linda Cote
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Schweitzer
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Paola Barba
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth M Takacs
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Matthew Clark
- Department of Horticultural Science, University of Minnesota, St Paul, MN 55108, USA
| | - James Luby
- Department of Horticultural Science, University of Minnesota, St Paul, MN 55108, USA
| | - David C Manns
- Department of Food Science, Cornell University, Geneva, NY 14456, USA
| | - Gavin Sacks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Jason Londo
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456, USA
| | - Anne Fennell
- Plant Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - David Gadoury
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Bruce Reisch
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | | | - Qi Sun
- Bioinformatics Facility, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|