1
|
Fu B, Lin Z, Yan L, Zhang Q, Liu C, Cai J, Guo W, Liu Y, Zhai W, Gong S, Xu F, Wu J. Fine-mapping of PmHHM, a broad-spectrum allele from a wheat landrace conferring both seedling and adult resistance to powdery mildew. FRONTIERS IN PLANT SCIENCE 2025; 15:1489013. [PMID: 39980756 PMCID: PMC11839664 DOI: 10.3389/fpls.2024.1489013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/28/2024] [Indexed: 02/22/2025]
Abstract
Introduction Common wheat is a leading global food crop that impacts food security. Wheat powdery mildew (PM), caused by Blumeria graminis f. sp. tritici (Bgt), poses a significant threat to grain yield and flour quality. The identification and utilization of broad-spectrum resistance genes against PM are essential for effective disease control. Methods The resistance spectrum test during the seedling stage and the identification of resistance during the adult stage were conducted to evaluate the wheat landrace Honghuamai (HHM). Five segregating populations were investigated to assess the inheritance of PM resistance in HHM. To map its PM resitance gene, bulked segregant analysis, molecular mapping and comparative genomic analysis were also used in the present study. Results HHM shows remarkable adult resistance in the field and is nearly immune to all 25 Bgt isolates used in seedling tests, making it an excellent source of PM resistance. PM resistance in HHM was determined by a single dominant gene, temporarily named PmHHM. It was then fine-mapped to an interval with a genetic distance of 0.0031 cM and a physical distance of 187.4 kb on chromosome 4AL of the Chinese Spring reference sequence v.2.1. Four genes were identified in the target region, three of which encode nucleotide-binding leucine-rich repeat (NLR) proteins. Comparative genomic analysis revealed presence/absence variations (PAVs) of the PmHHM locus among common wheat varieties. Discussion These closely linked molecular markers will not only benefit the cloning of the gene underlying PmHHM but also facilitate the efficient utilization of the gene in breeding programs.
Collapse
Affiliation(s)
- Bisheng Fu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhixin Lin
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Lijuan Yan
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Qiaofeng Zhang
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Caiyun Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Jin Cai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Wei Guo
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Ying Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Wenling Zhai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Feng Xu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Jizhong Wu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Fu B, Zhang Q, Cai J, Guo W, Liu C, Liu Y, Zhai W, Gong S, Wu J. Identification and Precise Mapping of PmHSM, a Novel Recessive Powdery Mildew Resistance Allele from Wheat Landrace Heshangmai. PLANT DISEASE 2024; 108:3623-3630. [PMID: 39172492 DOI: 10.1094/pdis-12-23-2754-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Common wheat (Triticum aestivum L.) is the world's primary food crop, and ensuring its safe production is of utmost importance for global peace and human development. However, the continuous threat of fungal diseases, including Fusarium head scab, rusts, sharp eyespot, and powdery mildew (PM), poses a significant challenge to production. PM caused by Blumeria graminis f. sp. tritici causes substantial yield losses. Heshangmai (HSM), a wheat landrace originating from Sichuan Province, possesses high levels of resistance to PM. A comprehensive study using a large segregating population of a cross between HSM and Ningmaizi119 (NMZ119) revealed a single recessive allele conferring resistance. The gene, provisionally designated PmHSM, was located on the long arm of chromosome 4A (4AL). Molecular marker analysis, a PM response array, and an allelism test indicated that PmHSM is a novel recessive resistance gene that shares an allelic relationship with PmHHXM. Thirteen simple sequence repeat markers were developed using the sequence information of the 4AL region in the Chinese spring reference sequence version 2.1. PmHSM was flanked by the markers Xmp1567 and Xmp1444 at genetic distances of 0.11 and 0.18 cM, respectively, and cosegregated with the markers Xmp1439/Xmp1440/Xmp1442.
Collapse
Affiliation(s)
- Bisheng Fu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, P.R. China
| | - Qiaofeng Zhang
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Jin Cai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
| | - Wei Guo
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
| | - Caiyun Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
| | - Ying Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Wenling Zhai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
| | - Jizhong Wu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, P.R. China
| |
Collapse
|
3
|
Zhou Y, Gu Y, Zhang X, Wang W, Li Q, Wang B. QTL Mapping of Adult Plant Resistance to Powdery Mildew in Chinese Wheat Landrace Baidatou. PLANT DISEASE 2024; 108:1062-1072. [PMID: 38640452 DOI: 10.1094/pdis-12-22-2894-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is one of the most devastating diseases affecting wheat throughout the world. Breeding and growing resistant wheat cultivars is one of the most economic and effective methods to control the disease, and as such, identifying and mapping the new and effective resistance genes is critical. Baidatou, a Chinese wheat landrace, shows excellent field resistance to powdery mildew. To identify the resistance gene(s) in Baidatou, 170 F7:8 recombinant inbred lines (RILs) derived from the cross Mingxian 169/Baidatou were evaluated for powdery mildew response at the adult-plant stage in the experimental fields in Yangling (YL) of Shaanxi Province and Tianshui (TS) in Gansu Province in 2019, 2020, and 2021. The relative area under disease progress curve (rAUDPC) of Mingxian 169/Baidatou F7:8 RILs indicated that the resistance of Baidatou to powdery mildew was controlled by quantitative trait loci (QTLs). Based on bulk segregation analysis combined with the 660K single nucleotide polymorphism (SNP) array and genotyping by target sequencing (16K SNP) of the entire RIL population, two QTLs, QPmbdt.nwafu-2AS and QPmbdt.nwafu-3AS, were identified, and these accounted for up to 44.5% of the phenotypic variation. One of the QTLs was located on the 3.32 cM genetic interval on wheat chromosome 2AS between the kompetitive allele-specific PCR markers AX-111012288 and AX_174233809, and another was located on the 9.6 cM genetic interval on chromosome 3AS between the SNP markers 3A_684044820 and 3A_686681822. These markers could be useful for successful breeding of powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Yongchao Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yudi Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaomei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenli Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Han G, Yan H, Gu T, Cao L, Zhou Y, Liu W, Liu D, An D. Identification of a Wheat Powdery Mildew Dominant Resistance Gene in the Pm5 Locus for High-Throughput Marker-Assisted Selection. PLANT DISEASE 2023; 107:450-456. [PMID: 35815965 DOI: 10.1094/pdis-07-22-1545-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), poses a severe threat to wheat yield and quality worldwide. Rapid identification and the accurate transference of effective resistance genes are important to the development of resistant cultivars and the sustainable control of this disease. In the present study, the wheat line AL11 exhibited high levels of resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the AL11 × 'Shixin 733' mapping population revealed that its resistance was controlled by a single dominant gene, tentatively designated PmAL11. Using bulked segregant RNA-Seq and molecular marker analysis, PmAL11 was mapped to the Pm5 locus on chromosome 7B where it cosegregated with the functional marker Pm5e-KASP. Sequence alignment analysis revealed that the Pm5e-homologous sequence in AL11 was identical to the reported recessive gene Pm5e in wheat landrace 'Fuzhuang 30'. It appears that PmAL11 was most probably Pm5e, but it was mediated by a dominant inheritance pattern, so it should provide a valuable resistance resource for both genetic study and wheat breeding. To efficiently use and trace PmAL11 in breeding, a new kompetitive allele-specific PCR marker AL11-K2488 that cosegregated with this gene was developed and confirmed to be applicable in the different wheat backgrounds, thus promoting its use in the marker-assisted selection of PmAL11.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Qiu D, Huang J, Guo G, Hu J, Li Y, Zhang H, Liu H, Yang L, Zhou Y, Yang B, Zhang Y, Liu Z, Li H. The Pm5e Gene Has No Negative Effect on Wheat Agronomic Performance: Evidence From Newly Established Near-Isogenic Lines. FRONTIERS IN PLANT SCIENCE 2022; 13:918559. [PMID: 35755686 PMCID: PMC9216190 DOI: 10.3389/fpls.2022.918559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 05/23/2023]
Abstract
Wheat genotypes resistant to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) provide a sustainable means for disease control. We developed a pair of near-isogenic lines H962R and H962S with contrasting reactions to powdery mildew from a residue heterozygous line. H962R was resistant to 127 out of the 136 Bgt isolates collected from the major wheat-producing regions of China and showed a similar virulence/avirulence pattern as Fuzhuang 30, Xiaobaidong, and Hongquanmang carrying resistance allele of Pm5e, but H962S was resistant to none of them. A dominant gene was responsible for the powdery mildew resistance of H962R as revealed by the genetic analysis using segregating populations derived from a cross between H962R and H962S. Molecular marker analysis detected a resistance locus, designated PmH962, on a genetic interval of the chromosome arm 7BL where Pm5e resides. This locus was co-segregated with the functional marker of Pm5e. The PCR-based sequence alignment of Pm5e demonstrated that H962R had an identical sequence as Fuzhuang 30 (haplotype HapGA), and H962S possessed the same sequence as the powdery mildew susceptible cultivar Kenong 199. The genomic compositions of lines H962R and H962S were highly comparable as evidenced by only a small percentage of SNP variations detected by the 16K Genotyping by Target Sequencing (GBTS) SNP array and the 90K Illumina iSelect Wheat SNP array. The two lines performed similarly in the yield-related and plant growth traits investigated, except for greater kernel weight in H962R than in H962S. This indicates that Pm5e has no deleterious effect and can be served as an excellent disease resistance gene in wheat breeding.
Collapse
Affiliation(s)
- Dan Qiu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang Huang
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghuang Hu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hongjun Zhang
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwei Liu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Yang
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Zhou
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Benzhou Yang
- Institute of Wheat Sciences, Jining Academy of Agricultural Sciences, Jining, China
| | - Yudan Zhang
- Institute of Wheat Sciences, Jining Academy of Agricultural Sciences, Jining, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Wang J, Li Y, Xu F, Xu H, Han Z, Liu L, Song Y. Candidate powdery mildew resistance gene in wheat landrace cultivar Hongyoumai discovered using SLAF and BSR-seq. BMC PLANT BIOLOGY 2022; 22:83. [PMID: 35196978 PMCID: PMC8864798 DOI: 10.1186/s12870-022-03448-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is an important disease affecting wheat production. Planting resistant cultivars is an effective, safe, and economical method to control the disease. Map construction using next-generation sequencing facilitates gene cloning based on genetic maps and high-throughput gene expression studies. In this study, specific-locus amplified fragment sequencing (SLAF) was used to analyze Huixianhong (female parent), Hongyoumai (male parent) and two bulks (50 homozygous resistant and 50 susceptible F2:3 segregating population derived from Huixianhong × Hongyoumai to determine a candidate gene region for resistance to powdery mildew on the long arm of chromosome 7B in wheat landrace Hongyoumai. Gene expressions of candidate regions were obtained using bulked segregant RNA-seq in 10 homozygous resistant and 10 susceptible progeny inoculated by Bgt.. Candidate genes were obtained using homology-based cloning in two parents. RESULTS A 12.95 Mb long candidate region in chromosome 7BL was identified, and five blocks in SLAF matched the scaffold of the existing co-segregation marker Xmp1207. In the candidate region, 39 differentially expressed genes were identified using RNA-seq, including RGA4 (Wheat_Chr_Trans_newGene_16173)-a disease resistance protein whose expression was upregulated in the resistant pool at 16 h post inoculation with Bgt. Quantitative reverse transcription (qRT)-PCR was used to further verify the expression patterns in Wheat_Chr_Trans_newGene_16173 that were significantly different in the two parents Hongyoumai and Huixianhong. Two RGA4 genes were cloned based on the sequence of Wheat_Chr_Trans_newGene_16173, respectively from two parent and there was one amino acid mutation: S to G in Huixianhong on 510 loci. CONCLUSION The combination of SLAF and BSR-seq methods identified a candidate region of pmHYM in the chromosome 7BL of wheat landrace cultivar Hongyoumai. Comparative analysis between the scaffold of co-segregating marker Xmp1207 and SLAF-seq showed five matching blocks. qRT-PCR showed that only the resistant gene Wheat_Chr_Trans_newGene_16173 was significantly upregulated in the resistant parent Hongyoumai after inoculation with Bgt, and gene cloning revealed a difference in one amino acid between the two parent genes, indicating it was involved in the resistance response and may be the candidate resistance gene pmHYM.
Collapse
Affiliation(s)
- Junmei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Yahong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Fei Xu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Zihang Han
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Lulu Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Yuli Song
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Hinterberger V, Douchkov D, Lück S, Kale S, Mascher M, Stein N, Reif JC, Schulthess AW. Mining for New Sources of Resistance to Powdery Mildew in Genetic Resources of Winter Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:836723. [PMID: 35300015 PMCID: PMC8922026 DOI: 10.3389/fpls.2022.836723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 05/02/2023]
Abstract
Genetic pathogen control is an economical and sustainable alternative to the use of chemicals. In order to breed resistant varieties, information about potentially unused genetic resistance mechanisms is of high value. We phenotyped 8,316 genotypes of the winter wheat collection of the German Federal ex situ gene bank for Agricultural and Horticultural Crops, Germany, for resistance to powdery mildew (PM), Blumeria graminis f. sp. tritici, one of the most important biotrophic pathogens in wheat. To achieve this, we used a semi-automatic phenotyping facility to perform high-throughput detached leaf assays. This data set, combined with genotyping-by-sequencing (GBS) marker data, was used to perform a genome-wide association study (GWAS). Alleles of significantly associated markers were compared with SNP profiles of 171 widely grown wheat varieties in Germany to identify currently unexploited resistance conferring genes. We also used the Chinese Spring reference genome annotation and various domain prediction algorithms to perform a domain enrichment analysis and produced a list of candidate genes for further investigation. We identified 51 significantly associated regions. In most of these, the susceptible allele was fixed in the tested commonly grown wheat varieties. Eleven of these were located on chromosomes for which no resistance conferring genes have been previously reported. In addition to enrichment of leucine-rich repeats (LRR), we saw enrichment of several domain types so far not reported as relevant to PM resistance, thus, indicating potentially novel candidate genes for the disease resistance research and prebreeding in wheat.
Collapse
Affiliation(s)
| | - Dimitar Douchkov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Stefanie Lück
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Sandip Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Jochen C. Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Albert W. Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- *Correspondence: Albert W. Schulthess
| |
Collapse
|
8
|
Wu Y, Yu X, Zhang X, Yan L, Gao L, Hao Y, Wang X, Xue S, Qu Y, Hu T, Fu B, Zhou Y, Li S, Li H, Li C, Ma P, Xu H. Characterization of PmDGM Conferring Powdery Mildew Resistance in Chinese Wheat Landrace Duanganmang. PLANT DISEASE 2021; 105:3127-3133. [PMID: 33630690 DOI: 10.1094/pdis-12-20-2719-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease that threatens yield and quality. Host resistance is considered the most effective and preferred means to control this disease. Wheat landrace Duanganmang (DGM) showed high resistance or near immunity to Blumeria graminis f. sp. tritici mixture from Henan Province, China. DGM was crossed with highly susceptible Chinese wheat landrace Huixianhong (HXH) and cultivar 'Shimai 15' (SM15) to produce genetic populations. The resistance of DGM to Blumeria graminis f. sp. tritici isolate E09 was shown to be controlled by a single dominant Mendelian factor, tentatively designated PmDGM. Marker analysis and 55K single nucleotide polymorphism (SNP) array scanning showed that this gene was positioned in the Pm5 interval (2.4 cM or 1.61 Mb) flanked by Xhenu099 and Xmp1158 in the Chinese Spring reference genome. Homology-based cloning and sequence analysis demonstrated that DGM has the identical NLR gene (Pm5e) and RXL gene reported in Fuzhuang 30 (FZ30), conferring and modifying powdery mildew resistance, respectively. However, based on the different reaction patterns to the Blumeria graminis f. sp. tritici isolate B15 between DGM and FZ30, the authors speculate that DGM may have two tightly linked genes that could not be separated in the current mapping population, one of which is PmDGM and the other being Pm5e. Hence, this study provides a valuable resistance resource for improvement of powdery mildew resistance.
Collapse
Affiliation(s)
- Yanan Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaoting Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xu Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Lijuan Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Li Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yiqing Hao
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xingyu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yunfeng Qu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tiezhu Hu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Bisheng Fu
- Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Hongjie Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Li
- Molecular Breeding Laboratory, Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
9
|
Jin Y, Xue F, Zhou Y, Duan X, Hu J, Li Y, Zhu H, Sun J. Fine-Mapping of the Powdery Mildew Resistance Gene mlxbd in the Common Wheat Landrace Xiaobaidong. PLANT DISEASE 2020; 104:1231-1238. [PMID: 32065563 DOI: 10.1094/pdis-07-19-1347-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Powdery mildew, which is caused by Blumeria graminis f. sp. tritici (Bgt), is a disease of wheat worldwide. Xiaobaidong is a Chinese wheat landrace, which still maintains good resistance against powdery mildew. To obtain more genetic markers closely linked to the powdery mildew resistance gene mlxbd and narrow the candidate region for its isolation, new simple sequence repeats and cross intron-spanning markers were designed based on the genome sequence of Triticum aestivum cultivar Chinese Spring chromosome 7BL. The flanking markers 7BLSSR49 and WGGC5746 were found to be tightly linked to mlxbd at genetic distances of 0.4 cM and 0.3 cM, respectively. The resistance locus was mapped to a 63.40 kb and 0.29 Mb region of the Chinese Spring genome and Zavitan genome, respectively. The linked markers of mlxbd could be used as diagnostic markers for mlxbd. The linked molecular markers and delineated genomic region in the sequenced Chinese Spring genome will assist the future map-based cloning of mlxbd.
Collapse
Affiliation(s)
- Yanlong Jin
- College of Agronomy, Shihezi University, The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Fei Xue
- College of Agronomy, Shihezi University, The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yilin Zhou
- State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiayu Duan
- State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinghuang Hu
- College of Agronomy, Shihezi University, The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yanjun Li
- College of Agronomy, Shihezi University, The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Huaguo Zhu
- College of Agronomy, Shihezi University, The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Jie Sun
- College of Agronomy, Shihezi University, The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| |
Collapse
|
10
|
Li Y, Shi X, Hu J, Wu P, Qiu D, Qu Y, Xie J, Wu Q, Zhang H, Yang L, Liu H, Zhou Y, Liu Z, Li H. Identification of a Recessive Gene PmQ Conferring Resistance to Powdery Mildew in Wheat Landrace Qingxinmai Using BSR-Seq Analysis. PLANT DISEASE 2020; 104:743-751. [PMID: 31967507 DOI: 10.1094/pdis-08-19-1745-re] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), a biotrophic fungal species. It is very important to mine new powdery mildew (Pm) resistance genes for developing resistant wheat cultivars to reduce the deleterious effects of the disease. This study was carried out to characterize the Pm gene in Qingxinmai, a winter wheat landrace from Xinjiang, China. Qingxinmai is resistant to many Bgt isolates collected from different wheat fields in China. F1, F2, and F2:3 generations of the cross between Qingxinmai and powdery mildew susceptible line 041133 were developed. It was confirmed that a single recessive gene, PmQ, conferred the seedling resistance to a Bgt isolate in Qingxinmai. Bulked segregant analysis-RNA-Seq (BSR-Seq) was performed on the bulked homozygous resistant and susceptible F2:3 families, which detected 57 single nucleotide polymorphism (SNP) variants that were enriched in a 40 Mb genomic interval on chromosome arm 2BL. Based on the flanking sequences of the candidate SNPs extracted from the Chinese Spring reference genome, 485 simple sequence repeat (SSR) markers were designed. Six polymorphic SSR markers, together with nine markers that were anchored on chromosome arm 2BL, were used to construct a genetic linkage map for PmQ. This gene was placed in a 1.4 cM genetic interval between markers Xicsq405 and WGGBH913 corresponding to 4.9 Mb physical region in the Chinese Spring reference genome. PmQ differed from most of the other Pm genes identified on chromosome arm 2BL based on its position and/or origin. However, this gene and Pm63 from an Iranian common wheat landrace were located in a similar genomic region, so they may be allelic.
Collapse
Affiliation(s)
- Yahui Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaohan Shi
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinghuang Hu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipei Wu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Qiu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunfeng Qu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingzhong Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiuhong Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongjun Zhang
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Yang
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongwei Liu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Zhou
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Qie Y, Sheng Y, Xu H, Jin Y, Ma F, Li L, Li X, An D. Identification of a New Powdery Mildew Resistance Gene pmDHT at or Closely Linked to the Pm5 Locus in the Chinese Wheat Landrace Dahongtou. PLANT DISEASE 2019; 103:2645-2651. [PMID: 31453747 DOI: 10.1094/pdis-02-19-0401-re] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chinese wheat landrace Dahongtou was resistant to 35 of 38 tested Chinese isolates of Blumeria graminis f. sp. tritici at the seedling stage. Genetic analysis of the F2 populations and their derived F2:3 families of crosses of Dahongtou with the susceptible varieties Mingxian 169 and Huixianhong indicated that the resistance of Dahongtou to B. graminis f. sp. tritici isolate E09 was conferred by a single recessive gene, tentatively designated as pmDHT. The gene was mapped to chromosome arm 7BL and flanked by markers Xwmc526/XBE443877 and Xgwm611/Xwmc511 at genetic distances of 0.8 and 0.3 cM, respectively. The chromosomal position of pmDHT was similar to the multi-allelic Pm5 locus on 7BL. Allelism tests with crosses of Dahongtou with Fuzhuang 30 (Pm5e) and Xiaobaidong (mlxbd) indicated that pmDHT was allelic to both Pm5e and mlxbd. However, pmDHT showed a different pattern of resistance to the 38 B. graminis f. sp. tritici isolates compared with wheat lines with Pm5a, Pm5b, Pm5e, mlxbd, and PmHYM and also differed from PmSGA. Thus, pmDHT was identified most likely as a new allele or at least a closely linked gene of the Pm5 locus. This gene can be transferred into susceptible wheat cultivars/lines and pyramided with other resistance genes through marker-assisted selection to improve powdery mildew resistance.
Collapse
Affiliation(s)
- Yanmin Qie
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yuan Sheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Development of SNP, KASP, and SSR Markers by BSR-Seq Technology for Saturation of Genetic Linkage Map and Efficient Detection of Wheat Powdery Mildew Resistance Gene Pm61. Int J Mol Sci 2019; 20:ijms20030750. [PMID: 30754626 PMCID: PMC6387370 DOI: 10.3390/ijms20030750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
The gene Pm61 that confers powdery mildew resistance has been previously identified on chromosome arm 4AL in Chinese wheat landrace Xuxusanyuehuang (XXSYH). To facilitate the use of Pm61 in breeding practices, the bulked segregant analysis-RNA-Seq (BSR-Seq) analysis, in combination with the information on the Chinese Spring reference genome sequence, was performed in the F2:3 mapping population of XXSYH × Zhongzuo 9504. Two single nucleotide polymorphism (SNP), two Kompetitive Allele Specific PCR (KASP), and six simple sequence repeat (SSR) markers, together with previously identified polymorphic markers, saturated the genetic linkage map for Pm61, especially in the proximal side of the target gene that was short of gene-linked markers. In the newly established genetic linkage map, Pm61 was located in a 0.71 cM genetic interval and can be detected in a high throughput scale by the KASP markers Xicsk8 and Xicsk13 or by the standard PCR-based markers Xicscx497 and Xicsx538. The newly saturated genetic linkage map will be useful in molecular marker assisted-selection of Pm61 in breeding for disease resistant cultivar and in its map-based cloning.
Collapse
|
13
|
Li G, Carver BF, Cowger C, Bai G, Xu X. Pm223899, a new recessive powdery mildew resistance gene identified in Afghanistan landrace PI 223899. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2775-2783. [PMID: 30327847 DOI: 10.1007/s00122-018-3199-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/05/2018] [Indexed: 05/18/2023]
Abstract
A new recessive powdery mildew resistance gene, Pm223899, was identified in Afghanistan wheat landrace PI 223899 and mapped to an interval of about 831 Kb in the terminal region of the short arm of chromosome 1A. Wheat powdery mildew, a globally important disease caused by the biotrophic fungus Blumeria graminis f.sp. tritici (Bgt), has occurred with increased frequency and severity in recent years, and some widely deployed resistance genes have lost effectiveness. PI 223899 is an Afghanistan landrace exhibiting high resistance to Bgt isolates collected from the Great Plains. An F2 population and F2:3 lines derived from a cross between PI 223899 and OK1059060-126135-3 were evaluated for response to Bgt isolate OKS(14)-B-3-1, and the bulked segregant analysis (BSA) approach was used to map the powdery mildew resistance gene. Genetic analysis indicated that a recessive gene, designated Pm223899, conferred powdery mildew resistance in PI 223899. Linkage analysis placed Pm223899 to an interval of about 831 Kb in the terminal region of chromosome 1AS, spanning 4,504,697-5,336,062 bp of the Chinese Spring reference sequence. Eight genes were predicted in this genomic region, including TraesCS1AG008300 encoding a putative disease resistance protein RGA4. Pm223899 was flanked proximally by a SSR marker STARS333 (1.4 cM) and distally by the Pm3 locus (0.3 cM). One F2 recombinant was identified between Pm3 and Pm223899 using a Pm3b-specific marker, indicating that Pm223899 is most likely a new gene, rather than an allele of the Pm3 locus. Pm223389 confers a high level of resistance to Bgt isolates collected from Pennsylvania, Oklahoma, Nebraska, and Montana. Therefore, Pm223389 can be used to enhance powdery mildew resistance in these states. Pm3b-1 and STARS333 have the potential to tag Pm223389 in wheat breeding.
Collapse
Affiliation(s)
- Genqiao Li
- Wheat, Peanut, and Other Field Crops Research Unit, USDA-ARS, Stillwater, OK, 74075, USA
| | - Brett F Carver
- Plant and Soil Science Department, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506, USA
| | - Xiangyang Xu
- Wheat, Peanut, and Other Field Crops Research Unit, USDA-ARS, Stillwater, OK, 74075, USA.
| |
Collapse
|
14
|
Sun H, Hu J, Song W, Qiu D, Cui L, Wu P, Zhang H, Liu H, Yang L, Qu Y, Li Y, Li T, Cheng W, Zhou Y, Liu Z, Li J, Li H. Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2085-2097. [PMID: 29967989 DOI: 10.1007/s00122-018-3135-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/21/2018] [Indexed: 05/23/2023]
Abstract
A single recessive powdery mildew resistance gene Pm61 from wheat landrace Xuxusanyuehuang was mapped within a 0.46-cM genetic interval spanning a 1.3-Mb interval of the genomic region of chromosome arm 4AL. Epidemics of powdery mildew incited by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt) have caused significant yield reductions in many wheat (Triticum aestivum)-producing regions. Identification of powdery mildew resistance genes is required for sustainable improvement of wheat for disease resistance. Chinese wheat landrace Xuxusanyuehuang was resistant to several Bgt isolates at the seedling stage. Genetic analysis based on the inoculation of Bgt isolate E09 on the F1, F2, and F2:3 populations produced by crossing Xuxusanyuehuang to susceptible cultivar Mingxian 169 revealed that the resistance of Xuxusanyuehuang was controlled by a single recessive gene. Bulked segregant analysis and simple sequence repeat (SSR) mapping placed the gene on chromosome bin 4AL-4-0.80-1.00. Comparative genomics analysis was performed to detect the collinear genomic regions of Brachypodium distachyon, rice, sorghum, Aegilops tauschii, T. urartu, and T. turgidum ssp. dicoccoides. Based on the use of 454 contig sequences and the International Wheat Genome Sequence Consortium survey sequence of Chinese Spring wheat, four EST-SSR and seven SSR markers were linked to the gene. An F5 recombinant inbred line population derived from Xuxusanyuehuang × Mingxian 169 cross was used to develop the genetic linkage map. The gene was localized in a 0.46-cM genetic interval between Xgwm160 and Xicsx79 corresponding to 1.3-Mb interval of the genomic region in wheat genome. This is a new locus for powdery mildew resistance on chromosome arm 4AL and is designated Pm61.
Collapse
Affiliation(s)
- Huigai Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Jinghuang Hu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Song
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Biology, Hunan University, Changsha, 410082, China
| | - Dan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Cui
- Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Peipei Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwei Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Yang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunfeng Qu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life Science and Technology, Harbin Normal University, Harbin, 150080, China
| | - Yahui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Teng Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Cheng
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China
| | - Yang Zhou
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jingting Li
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China.
| | - Hongjie Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|