1
|
Claeys H, Neyrinck E, Dumoulin L, Pharazyn A, Verstichele A, Pauwels L, Nuccio ML, Van Ex F. Coordinated gene upregulation in maize through CRISPR/Cas-mediated enhancer insertion. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:16-18. [PMID: 37861059 PMCID: PMC10753999 DOI: 10.1111/pbi.14191] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Affiliation(s)
| | | | | | | | | | - Laurens Pauwels
- Ghent UniversityDepartment of Plant Biotechnology and BioinformaticsGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | | | | |
Collapse
|
2
|
Back to the wild: mining maize (Zea mays L.) disease resistance using advanced breeding tools. Mol Biol Rep 2022; 49:5787-5803. [PMID: 35064401 DOI: 10.1007/s11033-021-06815-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/06/2021] [Indexed: 10/19/2022]
Abstract
Cultivated modern maize (Zea mays L.) originated through the continuous process of domestication from its wild progenitors. Today, maize is considered as the most important cereal crop which is extensively cultivated in all parts of the world. Maize shows remarkable genotypic and phenotypic diversity which makes it an ideal model species for crop genetic research. However, intensive breeding and artificial selection of desired agronomic traits greatly narrow down the genetic bases of maize. This reduction in genetic diversity among cultivated maize led to increase the chance of more attack of biotic stress as climate changes hampering the maize grain production globally. Maize germplasm requires to integrate both durable multiple-diseases and multiple insect-pathogen resistance through tapping the unexplored resources of maize landraces. Revisiting the landraces seed banks will provide effective opportunities to transfer the resistant genes into the modern cultivars. Here, we describe the maize domestication process and discuss the unique genes from wild progenitors which potentially can be utilized for disease resistant in maize. We also focus on the genetics and disease resistance mechanism of various genes against maize biotic stresses and then considered the different molecular breeding tools for gene transfer and advanced high resolution mapping for gene pyramiding in maize lines. At last, we provide an insight for targeting identified key genes through CRISPR/Cas9 genome editing system to enhance the maize resilience towards biotic stress.
Collapse
|
3
|
Jackson D, Tian F, Zhang Z. Maize genetics, genomics, and sustainable improvement. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:2. [PMID: 37309482 PMCID: PMC10248613 DOI: 10.1007/s11032-021-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Affiliation(s)
- David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, and Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
4
|
Ahmad S, Tang L, Shahzad R, Mawia AM, Rao GS, Jamil S, Wei C, Sheng Z, Shao G, Wei X, Hu P, Mahfouz MM, Hu S, Tang S. CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8307-8323. [PMID: 34288688 DOI: 10.1021/acs.jafc.1c02653] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Zero hunger is one of the sustainable development goals set by the United Nations in 2015 to achieve global food security by 2030. The current harvest of crops is insufficient; feeding the world's population and meeting the goal of zero hunger by 2030 will require larger and more consistent crop production. Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR-Cas) technology is widely used for the plant genome editing. In this review, we consider this technology as a potential tool for achieving zero hunger. We provide a comprehensive overview of CRISPR-Cas technology and its most important applications for food crops' improvement. We also conferred current and potential technological breakthroughs that will help in breeding future crops to end global hunger. The regulatory aspects of deploying this technology in commercial sectors, bioethics, and the production of transgene-free plants are also discussed. We hope that the CRISPR-Cas system will accelerate the breeding of improved crop cultivars compared with conventional breeding and pave the way toward the zero hunger goal.
Collapse
Affiliation(s)
- Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Chen Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
5
|
Liu L, Lindsay PL, Jackson D. Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing. Int J Mol Sci 2021; 22:5167. [PMID: 34068350 PMCID: PMC8153303 DOI: 10.3390/ijms22105167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Artificial domestication and improvement of the majority of crops began approximately 10,000 years ago, in different parts of the world, to achieve high productivity, good quality, and widespread adaptability. It was initiated from a phenotype-based selection by local farmers and developed to current biotechnology-based breeding to feed over 7 billion people. For most cereal crops, yield relates to grain production, which could be enhanced by increasing grain number and weight. Grain number is typically determined during inflorescence development. Many mutants and genes for inflorescence development have already been characterized in cereal crops. Therefore, optimization of such genes could fine-tune yield-related traits, such as grain number. With the rapidly advancing genome-editing technologies and understanding of yield-related traits, knowledge-driven breeding by design is becoming a reality. This review introduces knowledge about inflorescence yield-related traits in cereal crops, focusing on rice, maize, and wheat. Next, emerging genome-editing technologies and recent studies that apply this technology to engineer crop yield improvement by targeting inflorescence development are reviewed. These approaches promise to usher in a new era of breeding practice.
Collapse
Affiliation(s)
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (L.L.); (P.L.L.)
| |
Collapse
|