1
|
Krishnan J. N, Kaur S, Kumar U, Singh R, Dhillon GS, Bhati PK, Chhuneja P. Mapping heat tolerance QTLs in Triticum durum-Aegilops speltoides backcross introgression lines to enhance thermotolerance in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1485914. [PMID: 39759239 PMCID: PMC11695302 DOI: 10.3389/fpls.2024.1485914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Wheat, a major cereal crop, is the most consumed staple food after rice in India. Frequent episodes of heat waves during the past decade have raised concerns about food security under impending global warming and necessitate the development of heat-tolerant wheat cultivars. Wild relatives of crop plants serve as untapped reservoirs of novel genetic variations. In the present study a mapping population comprising 311 BC2F10 backcross introgression lines (BILs) developed by crossing Triticum durum and heat-tolerant diploid wild wheat relative Aegilops speltoides accession pau3809 was used to map QTLs for terminal heat tolerance. The homozygous BILs were evaluated for heat stress tolerance component traits under an optimum environment (OE) and a heat-stressed environment (HE) for the two cropping seasons. Data on spike length, spikelet number per spike, peduncle length, thousand-grain weight, grains per spike, days to heading, days to maturity, grain filling duration, NDVI at heading, plant height and plot yield were recorded. Genotyping-by-sequencing (GBS) of the BILs was carried out, and 2945 high-quality, polymorphic SNPs were obtained. Thirty QTLs were detected for various heat tolerance component traits on chromosomes 1A, IB, 2A, 2B, 3B, 4B, 5A, 5B, 6A and 6B with phenotypic variance ranging from 5 to 11.5%. Several candidate genes reported to play a role in heat stress responses were identified by browsing the 1.85 Mb physical region flanking the stable QTLs detected under the HE. Identified QTL and linked markers can be employed for genomics-assisted breeding for heat tolerance in wheat.
Collapse
Affiliation(s)
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Uttam Kumar
- Borlaug Institute for South Asia, Ludhiana, India
- Astralyn Agro One Person Company (OPC) Pvt. Ltd, Shamli, India
| | - Rohtas Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | | | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
2
|
Wang Z, Li H, Zhou X, Mou Y, Zhang Y, Yu L, Chen X, Wu F, Zhou H, Lin Y, Li C, Liu Y. Identification, validation and candidate gene analysis of major QTL for Supernumerary spikelets in wheat. BMC Genomics 2024; 25:675. [PMID: 38977976 PMCID: PMC11229243 DOI: 10.1186/s12864-024-10540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The number of spikelets per spike is a key trait that affects the yield of bread wheat (Triticum aestivum L.). Identification of the QTL for spikelets per spike and its genetic effects that could be used in molecular assistant breeding in the future. RESULTS In this study, four recombinant inbred line (RIL) populations were generated and used, having YuPi branching wheat (YP), with Supernumerary Spikelets (SS) phenotype, as a common parent. QTL (QSS.sicau-2 A and QSS.sicau-2D) related to SS trait were mapped on chromosomes 2 A and 2D through bulked segregant exome sequencing (BSE-Seq). Fourteen molecular markers were further developed within the localization interval, and QSS.sicau-2 A was narrowed to 3.0 cM covering 7.6 Mb physical region of the reference genome, explaining 13.7 - 15.9% the phenotypic variance. Similarly, the QSS.sicau-2D was narrowed to 1.8 cM covering 2.4 Mb physical region of the reference genome, and it explained 27.4 - 32.9% the phenotypic variance. These two QTL were validated in three different genetic backgrounds using the linked markers. QSS.sicau-2 A was identified as WFZP-A, and QSS.sicau-2D was identified a novel locus, different to the previously identified WFZP-D. Based on the gene expression patterns, gene annotation and sequence analysis, TraesCS2D03G0260700 was predicted to be a potential candidate gene for QSS.sicau-2D. CONCLUSION Two significant QTL for SS, namely QSS.sicau-2 A and QSS.sicau-2D were identified in multiple environments were identified and their effect in diverse genetic populations was assessed. QSS.sicau-2D is a novel QTL associated with the SS trait, with TraesCS2D03G0260700 predicted as its candidate gene.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Chengdu Agricultural College, Chengdu, 611130, Sichuan, China
| | - Haojie Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xinjian Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yuzhou Mou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ying Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Lang Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xudong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Fangkun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Caixia Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
3
|
Ding H, Wang C, Cai Y, Yu K, Zhao H, Wang F, Shi X, Cheng J, Sun H, Wu Y, Qin R, Liu C, Zhao C, Sun X, Cui F. Characterization of a wheat stable QTL for spike length and its genetic effects on yield-related traits. BMC PLANT BIOLOGY 2024; 24:292. [PMID: 38632554 PMCID: PMC11022484 DOI: 10.1186/s12870-024-04963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.
Collapse
Affiliation(s)
- Hongke Ding
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Chenyang Wang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibiao Cai
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Kai Yu
- Yantai Agricultural Technology Extension Center, Yantai, 264001, China
| | - Haibo Zhao
- Yantai Agricultural Technology Extension Center, Yantai, 264001, China
| | - Faxiang Wang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Xinyao Shi
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiajia Cheng
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Han Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yongzhen Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Ran Qin
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chunhua Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| | - Xiaohui Sun
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China.
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
4
|
Shvachko N, Solovyeva M, Rozanova I, Kibkalo I, Kolesova M, Brykova A, Andreeva A, Zuev E, Börner A, Khlestkina E. Mining of QTLs for Spring Bread Wheat Spike Productivity by Comparing Spring Wheat Cultivars Released in Different Decades of the Last Century. PLANTS (BASEL, SWITZERLAND) 2024; 13:1081. [PMID: 38674490 PMCID: PMC11055096 DOI: 10.3390/plants13081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Genome-wide association studies (GWAS) are among the genetic tools for the mining of genomic loci associated with useful agronomic traits. The study enabled us to find new genetic markers associated with grain yield as well as quality. The sample under study consisted of spring wheat cultivars developed in different decades of the last century. A panel of 186 accessions was evaluated at VIR's experiment station in Pushkin across a 3-year period of field trials. In total, 24 SNPs associated with six productivity characteristics were revealed. Along with detecting significant markers for each year of the field study, meta-analyses were conducted. Loci associated with useful yield-related agronomic characteristics were detected on chromosomes 4A, 5A, 6A, 6B, and 7B. In addition to previously described regions, novel loci associated with grain yield and quality were identified during the study. We presume that the utilization of contrast cultivars which originated in different breeding periods allowed us to identify new markers associated with useful agronomic characteristics.
Collapse
Affiliation(s)
- Natalia Shvachko
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Maria Solovyeva
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Irina Rozanova
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Ilya Kibkalo
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Maria Kolesova
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Alla Brykova
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Anna Andreeva
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Evgeny Zuev
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany;
| | - Elena Khlestkina
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| |
Collapse
|
5
|
Jiang C, Xu Z, Fan X, Zhou Q, Ji G, Liao S, Wang Y, Ma F, Zhao Y, Wang T, Feng B. Genetic dissection of major QTL for grain number per spike on chromosomes 5A and 6A in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 14:1305547. [PMID: 38259947 PMCID: PMC10800429 DOI: 10.3389/fpls.2023.1305547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
Grain number per spike (GNS) is a crucial component of grain yield and plays a significant role in improving wheat yield. To identify quantitative trait loci (QTL) associated with GNS, a recombinant inbred line (RIL) population derived from the cross of Zhongkemai 13F10 and Chuanmai 42 was employed to conduct QTL mapping across eight environments. Based on the bulked segregant exome sequencing (BSE-Seq), genomic regions associated with GNS were detected on chromosomes 5A and 6A. According to the constructed genetic maps, two major QTL QGns.cib-5A (LOD = 4.35-8.16, PVE = 8.46-14.43%) and QGns.cib-6A (LOD = 3.82-30.80, PVE = 5.44-12.38%) were detected in five and four environments, respectively. QGns.cib-6A is a QTL cluster for other seven yield-related traits. QGns.cib-5A and QGns.cib-6A were further validated using linked Kompetitive Allele Specific PCR (KASP) markers in different genetic backgrounds. QGns.cib-5A exhibited pleiotropic effects on productive tiller number (PTN), spike length (SL), fertile spikelet number per spike (FSN), and ratio of grain length to grain width (GL/GW) but did not significantly affect thousand grain weight (TGW). Haplotype analysis revealed that QGns.cib-5A and QGns.cib-6A were the targets of artificial selection during wheat improvement. Candidate genes for QGns.cib-5A and QGns.cib-6A were predicted by analyzing gene annotation, spatiotemporal expression patterns, and orthologous and sequence differences. These findings will be valuable for fine mapping and map-based cloning of genes underlying QGns.cib-5A and QGns.cib-6A.
Collapse
Affiliation(s)
- Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The Innovative of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
6
|
Niu F, Liu Z, Zhang F, Yuan S, Bai J, Liu Y, Li Y, Zhang H, Zhang H, Zhao C, Song X, Zhang L. Identification and validation of major-effect quantitative trait locus QMS-5B associated with male sterility in photo-thermo-sensitive genic male sterile wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:257. [PMID: 38015285 DOI: 10.1007/s00122-023-04500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
KEY MESSAGE QMS-5B, a major QTL for photo-thermo-sensitive genic male sterility in wheat, was fine mapped in a 2.15 Mb region harboring a serine/threonine protein kinase gene TraesCS5B03G0887500, which was the most likely candidate gene. Genic male sterility is an essential trait in the utilization of heterosis and hybrid seed production for wheat. Currently, genic male sterile genes have been reported in wheat mutants, but the sterile genes controlling photo-thermo-sensitive genic male sterility in wheat have not been studied systematically. Here, 235 doubled haploid lines derived from a cross between photo-thermo-sensitive genic male sterile line BS462 and its restorer line CP279 were used to map male sterile gene by GenoBaits® Wheat 100 K Panel, bulked segregant exome sequencing (BSE-Seq) and wheat 660 K array. As a result, the major stable QTL on chromosome 5B, QMS-5B, was identified in all four environments, accounting for 7.3-36.4% of the phenotypic variances. Ulteriorly, QMS-5B was delimited to an approximate 2.15 Mb physical interval between KASP-5B5 and KASP-5B6 using kompetitive allele-specific PCR (KASP) markers. Within the interval, twenty-nine high-confidence genes were predicted according to Chinese Spring RefSeq v2.1. TraesCS5B03G0887500, encoding a serine/threonine protein kinase, was identified as the most likely candidate gene for QMS-5B based on weighted gene co-expression network analysis. Expression analysis confirmed that TraesCS5B03G0887500 was significantly differentially expressed in anthers of BS462 and CP279 at different stages under fertile and sterile environments. In addition, flanking KASP marker KASP-5B6 can effectively genotype male sterile lines and restorer lines, and can be used for molecular marker-assisted selection. This study provides insights into for exploring the mechanism of photo-thermo-sensitive genic male sterility in wheat.
Collapse
Affiliation(s)
- Fuqiang Niu
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zihan Liu
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fengting Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shaohua Yuan
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianfang Bai
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yongjie Liu
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanmei Li
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Heng Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Huishu Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changping Zhao
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Liping Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
7
|
Zhao D, Hu W, Fang Z, Cheng X, Liao S, Fu L. Two QTL regions for spike length showing pleiotropic effects on Fusarium head blight resistance and thousand-grain weight in bread wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:82. [PMID: 37974900 PMCID: PMC10645863 DOI: 10.1007/s11032-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Spike length (SL) plays an important role in the yield improvement of wheat and is significantly associated with other traits. Here, we used a recombinant inbred line (RIL) population derived from a cross between Yangmai 12 (YM12) and Yanzhan 1 (YZ1) to construct a genetic linkage map and identify quantitative trait loci (QTL) for SL. A total of 5 QTL were identified for SL, among which QSl.yaas-3A and QSl.yaas-5B are two novel QTL for SL. The YZ1 alleles at QSl.yaas-2D and QSl.yaas-5A, and the YM12 alleles at QSl.yaas-2A, QSl.yaas-3A, and QSl.yaas-5B conferred increasing SL effects. Two major QTL QSl.yaas-5A and QSl.yaas-5B explained 9.11-15.85% and 9.01-12.85% of the phenotypic variations, respectively. Moreover, the positive alleles of QSl.yaas-5A and QSl.yaas-5B could significantly increase Fusarium head blight (FHB) resistance (soil surface inoculation and spray inoculation were used) and thousand-grain weight (TGW) in the RIL population. Kompetitive allele-specific PCR (KASP) markers for QSl.yaas-5A and QSl.yaas-5B were developed and validated in an additional panel of 180 wheat cultivars/lines. The cultivars/lines harboring both the positive alleles of QSl.yaas-5A and QSl.yaas-5B accounted for only 28.33% of the validation populations and had the longest SL, best FHB resistance (using spray inoculation), and highest TGW. A total of 358 and 200 high-confidence annotated genes in QSl.yaas-5A and QSl.yaas-5B were identified, respectively. Some of the genes in these two regions were involved in cell development, disease resistance, and so on. The results of this study will provide a basis for directional breeding of longer SL, higher TGW, and better FHB resistance varieties and a solid foundation for fine-mapping QSl.yaas-5A and QSl.yaas-5B in future. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01427-8.
Collapse
Affiliation(s)
- Die Zhao
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Wenjing Hu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Zhengwu Fang
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Xiaoming Cheng
- Key Laboratory of Wheat Biology and Genetic Improvement for Low Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
| | - Sen Liao
- Key Laboratory of Wheat Biology and Genetic Improvement for Low Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
| | - Luping Fu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
8
|
Jiang C, Xu Z, Fan X, Zhou Q, Ji G, Chen L, Yu Q, Liao S, Zhao Y, Feng B, Wang T. Identification and validation of quantitative trait loci for fertile spikelet number per spike and grain number per fertile spikelet in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:69. [PMID: 36952062 DOI: 10.1007/s00122-023-04297-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
A major and stable QTL for fertile spikelet number per spike and grain number per fertile spikelet identified in a 4.96-Mb interval on chromosome 2A was validated in different genetic backgrounds. Fertile spikelet number per spike (FSN) and grain number per fertile spikelet (GNFS) contribute greatly to wheat yield improvement. To detect quantitative trait loci (QTL) associated with FSN and GNFS, we used a recombinant inbred line population crossed by Zhongkemai 13F10 and Chuanmai 42 in eight environments. Two Genomic regions associated with FSN were detected on chromosomes 2A and 6A using bulked segregant exome sequencing analysis. After the genetic linkage maps were constructed, four QTL QFsn.cib-2A, QFsn.cib-6A, QGnfs.cib-2A and QGnfs.cib-6A were identified in three or more environments. Among them, two major QTL QFsn.cib-2A (LOD = 4.67-9.34, PVE = 6.66-13.05%) and QGnfs.cib-2A (LOD = 5.27-11.68, PVE = 7.95-16.71%) were detected in seven and six environments, respectively. They were co-located in the same region, namely QFsn/Gnfs.cib-2A. The developed linked Kompetitive Allele Specific PCR (KASP) markers further validated this QTL in a different genetic background. QFsn/Gnfs.cib-2A showed pleiotropic effects on grain number per spike (GNS) and spike compactness (SC), and had no effect on grain weight. Since QFsn/Gnfs.cib-2A might be a new locus, it and the developed KASP markers can be used in wheat breeding. According to haplotype analysis, QFsn/Gnfs.cib-2A was identified as a target of artificial selection during wheat improvement. Based on haplotype analysis, sequence differences, spatiotemporal expression patterns, and gene annotation, the potential candidate genes for QFsn/Gnfs.cib-2A were predicted. These results provide valuable information for fine mapping and cloning gene(s) underlying QFsn/Gnfs.cib-2A.
Collapse
Affiliation(s)
- Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Zhao J, Sun L, Gao H, Hu M, Mu L, Cheng X, Wang J, Zhao Y, Li Q, Wang P, Li H, Zhang Y. Genome-wide association study of yield-related traits in common wheat ( Triticum aestivum L.) under normal and drought treatment conditions. FRONTIERS IN PLANT SCIENCE 2023; 13:1098560. [PMID: 36684753 PMCID: PMC9846334 DOI: 10.3389/fpls.2022.1098560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The primary goal of modern wheat breeding is to develop new high-yielding and widely adaptable varieties. We analyzed four yield-related agronomic traits in 502 wheat accessions under normal conditions (NC) and drought treatment (DT) conditions over three years. The genome-wide association analysis identified 51 yield-related and nine drought-resistance-related QTL, including 13 for the thousand-grain weight (TGW), 30 for grain length (GL), three for grain width (GW), five for spike length (SL) and nine for stress tolerance index (STI) QTL in wheat. These QTL, containing 72 single nucleotide polymorphisms (SNPs), explained 2.23 - 7.35% of the phenotypic variation across multiple environments. Eight stable SNPs on chromosomes 2A, 2D, 3B, 4A, 5B, 5D, and 7D were associated with phenotypic stability under NC and DT conditions. Two of these stable SNPs had association with TGW and STI. Several novel QTL for TGW, GL and SL were identified on different chromosomes. Three linked SNPs were transformed into kompetitive allele-specific PCR (KASP) markers. These results will facilitate the discovery of promising SNPs for yield-related traits and/or drought stress tolerance and will accelerate the development of new wheat varieties with desirable alleles.
Collapse
Affiliation(s)
- Jie Zhao
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Lijing Sun
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Huimin Gao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Mengyun Hu
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Liming Mu
- Institute of Cereal Crops, Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Xiaohu Cheng
- Institute of Cereal Crops, Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Jianbing Wang
- Institute of Cereal Crops, Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Yun Zhao
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Qianying Li
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Peinan Wang
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Hui Li
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yingjun Zhang
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
10
|
Luo W, Zhou J, Liu J, Liu Y, Mu Y, Tang H, Xu Q, Deng M, Jiang Q, Chen G, Qi P, Wang J, Jiang Y, Chen Z, Zheng Z, Wei Y, Zheng Y, Lan X, Ma J. Fine mapping of the Hairy glume (Hg) gene in a chromosome variation region at the distal terminus of 1AS. FRONTIERS IN PLANT SCIENCE 2022; 13:1006510. [PMID: 36204068 PMCID: PMC9530909 DOI: 10.3389/fpls.2022.1006510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Trichomes are differentiated epidermal cells and exist on above-ground organs of nearly all land plants with important roles in resistance to a wide range of biotic and abiotic stresses. We attempted to obtain candidate gene (s) for Hairy glume (Hg), responsible for the trichome on wheat glume, by using bulked segregant exome capture sequencing (BSE-Seq), while Hg was only mapped in 0.52-3.26 Mb of 1AS. To further fine map this gene and identify candidate genes in this region, a near isogenic line-derived population consisting of 2,050 F2 lines was generated in the present study. By analyzing this population, Hg was fine mapped into a 0.90 cM region covering a physical distance of ~825.03 Kb encompassing 6 high- and 23 low-confidence genes in the reference genome of Chinese Spring. A presence-absence variation was identified in the fine mapping region through analyses of sequence-tagged sites markers and genome sequences of the hairy glume parent of the near isogenic lines. The results presented here will be useful for further cloning Hg in wheat.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Jieguang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanlin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhongxu Chen
- Department of Life Science, Chengdu Tcuni Technology, Chengdu, Sichuan, China
| | - Zhi Zheng
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD, Australia
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
You J, Liu H, Wang S, Luo W, Gou L, Tang H, Mu Y, Deng M, Jiang Q, Chen G, Qi P, Peng Y, Tang L, Habib A, Wei Y, Zheng Y, Lan X, Ma J. Spike Density Quantitative Trait Loci Detection and Analysis in Tetraploid and Hexaploid Wheat Recombinant Inbred Line Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:796397. [PMID: 34975986 PMCID: PMC8716915 DOI: 10.3389/fpls.2021.796397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 05/15/2023]
Abstract
Spike density (SD) is an agronomically important character in wheat. In addition, an optimized spike structure is a key basis for high yields. Identification of quantitative trait loci (QTL) for SD has provided a genetic basis for constructing ideal spike morphologies in wheat. In this study, two recombinant inbred line (RIL) populations (tetraploid RIL AM and hexaploid RIL 20828/SY95-71 (2SY)) previously genotyped using the wheat55K SNP array were used to identify SD QTL. A total of 18 QTL were detected, and three were major and one was stably expressed (QSd.sau-2SY-7A.2, QSd.sau-AM-5A.2, QSd.sau-AM-7B, and QSd.sau-2SY-2D). They can explain up to 23.14, 19.97, 12.00, and 9.44% of phenotypic variation, respectively. QTL × environment and epistatic interactions for SD were further analyzed. In addition, pyramiding analysis further revealed that there were additive effects between QSd.sau-2SY-2D and QSd.sau-2SY-7A.2 in 2SY, and QSd.sau-AM-5A.2 and QSd.sau-AM-7B in AM. Pearson's correlation between SD and other agronomic traits, and effects of major or stable QTL on yield related traits indicated SD significantly impacted spike length (SL), spikelet number per spike (SNS) and kernel length (KL). Several genes related to spike development within the physical intervals of major or stable QTL were predicted and discussed. Collectively, our research identified QTL with potential applications for modern wheat breeding and broadening the genetic basis of SD.
Collapse
Affiliation(s)
- Jianing You
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Surong Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lulu Gou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Liwei Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|