1
|
Guo N, An R, Ren Z, Jiang J, Cai B, Hu S, Shao G, Jiao G, Xie L, Wang L, Zhao F, Tang S, Sheng Z, Hu P. Developing super rice varieties resistant to rice blast with enhanced yield and improved quality. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:232-234. [PMID: 39449161 DOI: 10.1111/pbi.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Naihui Guo
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Ruihu An
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Zongliang Ren
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Jun Jiang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Bonian Cai
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Ling Wang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Fengli Zhao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Peisong Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| |
Collapse
|
2
|
Yanting L, Bingkui W, Mengchao Z, Jing Y, Shenghai Y. Sensitivity of genotypically diverse rice varieties to radiation and the related changes to antioxidant enzyme activities. Int J Radiat Biol 2023; 100:453-465. [PMID: 38029339 DOI: 10.1080/09553002.2023.2290293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE Radiation mutagenesis, which typically involves gamma rays, is important for generating new rice germplasm resources. Determining the appropriate radiation dose range is critical for the success of radiation mutagenesis. Clarifying the sensitivity and tolerance of genotypically diverse rice varieties to gamma irradiation as well as the radiation-induced changes to reactive oxygen species (ROS) generation and antioxidant enzyme activities is crucial for increasing the utility of radiation mutagenesis in rice breeding programs. MATERIALS AND METHODS The seeds of the following four rice varieties with different genotypes were used as test materials: indica Zhe 1613, glutinous indica Zhe 1708, japonica Zhejing 100, and glutinous japonica Zhenuo 65. Additionally,60Co was used as the source of gamma rays. The rice seeds were irradiated with 14 doses (0, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, and 750 Gy). Non-irradiated seeds were used as the control. The seedling survival rate for each variety was recorded at 3, 7, 14, and 28 days after sowing. Moreover, the median lethal dose (LD50) and critical dose (LD40) were calculated according to the seedling survival rates at 28 days after sowing. The seedling superoxide anion (O2•-), hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents and the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) activities were analyzed at 7 days after sowing. RESULTS As the radiation dose increased, the seedling survival rate decreased. The seedling survival rate also decreased significantly as the number of days after sowing increased. Among the rice genotypes, the rank-order of the radiation tolerance was as follows: indica Zhe 1613 > glutinous indica Zhe 1708 > japonica Zhejing 100 > glutinous japonica Zhenuo 65. The LD50 values were 426.7 Gy for Zhe 1613, 329.2 Gy for Zhe 1708, 318.3 Gy for Zhejing 100, and 316.6 Gy for Zhenuo 65. Increases in the radiation dose resulted in significant increases in the seedling O2•- and H2O2 contents, but only up to a certain point. Further increases in the radiation dose caused the seedling O2•- and H2O2 contents to decrease. The H2O2 content for each variety peaked when the radiation dose was very close to the LD50. We propose that the radiation dose associated with the highest H2O2 content (±50 Gy) should be used as the recommended dose for the gamma irradiation of rice. The radiation dose that resulted in peak seedling O2•- contents in the analyzed rice varieties was very close to the LD40. In all rice varieties, the MDA content increased as the radiation dose increased. The SOD, CAT, POD, and APX activities increased as the radiation dose increased within a certain range (less than 600 Gy for Zhe 1613 and 400 Gy for the other varieties), but there were slight differences among the rice varieties. CONCLUSIONS Genotypically diverse rice varieties vary regarding their sensitivity to gamma irradiation. Our findings suggest that ROS generation and antioxidant enzyme activities are important factors associated with the radiation mutagenesis of rice. The close relationship between the activities of key antioxidant enzymes, such as SOD, POD, APX, and CAT, and the LD50 and LD40 may be exploited to enhance radiation mutagenesis through the use of plant growth regulators.
Collapse
Affiliation(s)
- Lu Yanting
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wang Bingkui
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhang Mengchao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ye Jing
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ye Shenghai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
3
|
Zhao Z, Ding Z, Huang J, Meng H, Zhang Z, Gou X, Tang H, Xie X, Ping J, Xiao F, Liu YG, Xie Y, Chen L. Copy number variation of the restorer Rf4 underlies human selection of three-line hybrid rice breeding. Nat Commun 2023; 14:7333. [PMID: 37957162 PMCID: PMC10643609 DOI: 10.1038/s41467-023-43009-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Cytoplasmic male sterility (CMS) lines are important for breeding hybrid crops, and utilization of CMS lines requires strong fertility restorer (Rf) genes. Rf4, a major Rf for Wild-Abortive CMS (CMS-WA), has been cloned in rice. However, the Rf4 evolution and formation of CMS-WA/Rf system remain elusive. Here, we show that the Rf4 locus emerges earlier than the CMS-WA gene WA352 in wild rice, and 69 haplotypes of the Rf4 locus are generated in the Oryza genus through the copy number and sequence variations. Eight of these haplotypes of the Rf4 locus are enriched in modern rice cultivars during natural and human selections, whereas non-functional rf4i is preferentially selected for breeding current CMS-WA lines. We further verify that varieties carrying two-copy Rf4 haplotype have stronger fertility restoration ability and are widely used in three-line hybrid rice breeding. Our findings increase our understanding of CMS/Rf systems and will likely benefit crop breeding.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhi Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingjing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hengjun Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zixu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin Gou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Huiwu Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingyao Ping
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
5
|
Liu P, He L, Mei L, Zhai W, Chen X, Ma B. Rapid and Directional Improvement of Elite Rice Variety via Combination of Genomics and Multiplex Genome Editing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6156-6167. [PMID: 35575308 DOI: 10.1021/acs.jafc.1c08028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High yield and superior quality are the main goals pursued by breeders for crop improvement. However, both of them are complex agronomic traits controlled by multiple genes, so the simultaneous improvement of these traits via sexual recombination is time-consuming and direction-uncontrolled. In this study, to solve this dilemma, we introduced the comparative genomic analysis based multiplex genome editing system (CG-MGE), a method for rapid and directional improvement of multiple traits. Application of this method, association analysis between genotypes and phenotypes was carried out to mine excellent alleles; subsequently, the rare excellent alleles of Gn1a, GW2, TGW3, and Chalk5 were simultaneously created by multiplex genome editing and successfully improved the plant architecture, grain yield, and quality of a widely cultivated elite rice variety. Overall, this study provides a method for rapid and directional improvement of crops, and the application of the CG-MGE will be helpful to accelerate rational design breeding.
Collapse
Affiliation(s)
- Pengcheng Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Lumei He
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Le Mei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xifeng Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| |
Collapse
|
6
|
Li P, Li Z, Liu X, Zhang H, Wang Q, Li N, Ding H, Yao F. Development and Application of Intragenic Markers for 14 Nitrogen-Use Efficiency Genes in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:891860. [PMID: 35615123 PMCID: PMC9125075 DOI: 10.3389/fpls.2022.891860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Asian cultivated rice consists of two main subspecies, xian/indica (XI) and geng/japonica (GJ), and GJ accessions have significantly lower nitrogen-use efficiency (NUE) than XI accessions. In order to facilitate genetic improvement of NUE in GJ accessions, we conducted haplotype analysis of 14 cloned NUE genes using 36 rice germplasm accessions with high-quality reference genome and developed 18 intragenic markers for elite haplotypes, which were then used to evaluate NUE genes in another 41 genetically diverse germplasm accessions from 12 countries and 71 approved GJ cultivars from northern provinces of China. Our results show that elite haplotypes of 12 NUE genes are mainly existed in XI accessions, but few is distributed in GJ accessions. The number of elite haplotypes carried by an XI accession can reach 10, while that carried by a GJ accession is less than 3. Surprisingly, the elite haplotype of gene DEP1 is nearly fixed in approved GJ cultivars, and elite haplotypes of gene MYB61 and NGR5 have been introduced into some approved GJ cultivars. The developed intragenic markers for NUE genes and evaluated 77 genetically diverse rice accessions could be of great use in the improvement of NUE in GJ cultivars.
Collapse
Affiliation(s)
- Pingbo Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhen Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xu Liu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hua Zhang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qingguo Wang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Nana Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hanfeng Ding
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fangyin Yao
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|