1
|
Li H, Wang C, Zhang B, Liu H, Hammond JP, Wang X, Ding G, Cai H, Wang S, Xu F, Shi L. Trade-offs between root-secreted acid phosphatase and root morphology traits, and their contribution to phosphorus acquisition in Brassica napus. PHYSIOLOGIA PLANTARUM 2024; 176:e14247. [PMID: 38499953 DOI: 10.1111/ppl.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Oilseed rape (Brassica napus) is one of the most important oil crops in the world and shows sensitivity to low phosphorus (P) availability. In many soils, organic P (Po) is the main component of the soil P pool. Po must be mineralised to Pi through phosphatases, and then taken up by plants. However, the relationship between root-secreted acid phosphatases (APase) and root morphology traits, two important P-acquisition strategies in response to P deficiency, is unclear among B. napus genotypes. This study aimed to understand their relationship and how they affect P acquisition, which is crucial for the sustainable utilisation of agricultural P resources. This study showed significant genotypic variations in root-secreted APase activity per unit root fresh weight (SAP) and total root-secreted APase activity per plant (total SAP) among 350 B. napus genotypes. Seed yield was positively correlated with total SAP but not significantly correlated with SAP. Six root traits of 18 B. napus genotypes with contrasting root biomass were compared under normal Pi, low Pi and Po. Genotypes with longer total root length (TRL) reduced SAP, but those with shorter TRL increased SAP under P deficiency. Additionally, TRL was important in P-acquisition under three P treatments, and total SAP was also important in P-acquisition under Po treatment. In conclusion, trade-offs existed between the two P-acquisition strategies among B. napus genotypes under P-deficient conditions. Total SAP was an important root trait under Po conditions. These results might help to breed B. napus with greater P-acquisition ability under low P availability conditions.
Collapse
Affiliation(s)
- Hao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Haijiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Xiaohua Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Guangda Ding
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|