1
|
Xu Y, Zhang Y, Qin Y, Gu M, Chen R, Sun Y, Wu Y, Li Q, Qiao Y, Wang X, Zhang Q, Kong L, Li S, Wang Z. Multi-omics analysis of functional substances and expression verification in cashmere fineness. BMC Genomics 2023; 24:720. [PMID: 38017403 PMCID: PMC10685610 DOI: 10.1186/s12864-023-09825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Numerous factors influence the growth and development of cashmere. Existing research on cashmere has predominantly emphasized a single omics level. Integrating multi-omics analyses can offer a more comprehensive understanding by encompassing the entire spectrum. This study more accurately and comprehensively identified the key factors influencing cashmere fineness using multi-omics analysis. METHODS This study used skin tissues of coarse cashmere type (CT_LCG) and fine cashmere type Liaoning cashmere goats (FT_LCG) for the analysis. This study employed an integrated approach involving transcriptomics, translatomics, proteomics, and metabolomics to identify substances associated with cashmere fineness. The findings were validated using parallel reaction monitoring (PRM) and multiple reaction monitoring (MRM) techniques. RESULTS The GO functional enrichment analysis identified three common terms: multicellular organismal process, immune system process, and extracellular region. Furthermore, the KEGG enrichment analysis uncovered the involvement of the arachidonic acid metabolic pathway. Protein expression trends were verified using PRM technology. The expression trends of KRT79, as confirmed by PRM, were consistent with those observed in TMT proteomics and exhibited a positive regulatory effect on cashmere fineness. Metabolite expression trends were confirmed using MRM technology. The expression trends of 9 out of 15 validated metabolites were in agreement with those identified in the non-targeted metabolomics analysis. CONCLUSIONS This study employed multi-omics analysis to identify key regulators of cashmere fineness, including PLA2G12A, KRT79, and prostaglandin B2. The findings of this study offer valuable data and establish a theoretical foundation for conducting comprehensive investigations into the molecular regulatory mechanisms and functional aspects of cashmere fineness.
Collapse
Affiliation(s)
- Yanan Xu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuting Qin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yinggang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanzhi Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lingchao Kong
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuaitong Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Xu Y, Cai W, Chen R, Zhang X, Bai Z, Zhang Y, Qin Y, Gu M, Sun Y, Wu Y, Wang Z. Metabolomic Analysis and MRM Verification of Coarse and Fine Skin Tissues of Liaoning Cashmere Goat. Molecules 2022; 27:molecules27175483. [PMID: 36080249 PMCID: PMC9457707 DOI: 10.3390/molecules27175483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
One of the critical elements in evaluating the quality of cashmere is its fineness, but we still know little about how it is regulated at the metabolic level. In this paper, we use UHPLC–MS/MS detection and analysis technology to compare the difference in metabolites between coarse cashmere (CT_LCG) and fine cashmere (FT_LCG) skin of Liaoning cashmere goats. According to the data, under positive mode four metabolites were significantly up-regulated and seven were significantly down-regulated. In negative mode, seven metabolites were significantly up-regulated and fourteen metabolites were significantly down-regulated. The two groups’ most significant metabolites, Gly–Phe and taurochenodeoxycholate, may be crucial in controlling cashmere’s growth, development, and fineness. In addition, we enriched six KEGG pathways, of which cholesterol metabolism, primary bile acid biosynthesis, and bile secretion were enriched in positive and negative modes. These findings offer a new research idea for further study into the critical elements influencing cashmere’s fineness.
Collapse
|
3
|
Ullah F, Jamal SM, Zhou H, Hickford JGH. Variation in ovine KRTAP8-1 affects mean staple length and opacity of wool fiber. Anim Biotechnol 2021:1-7. [PMID: 34666626 DOI: 10.1080/10495398.2021.1990078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, keratin-associated proteins gene (KRTAP8-1) from five different sheep breeds and breed-crosses (n = 310) was genotyped using a Polymerase Chain Reaction-Single Strand confirmation Polymorphism (PCR-SSCP). Six unique genotypes were observed: AA, AC, AD, AE, DD and EE, with AA being the most common in the different breeds and crosses. Twelve wool characteristics: yield, mean staple length (MSL), bulk, mean fiber diameter (MFD), fiber diameter standard deviation (FDSD), coefficient of variation of fiber diameter (CVFD), medullation, standard deviation of medullation (MeSD), coefficient of variation of medullation (CVMed), opacity, standard deviation of opacity (OpSD), and coefficient of variation of opacity (CVOp) were measured on wool derived from the sheep. Variation in KRTAP8-1 was found to have strong association with MSL, OpSD and CVOp (p ≤ 0.027). The MSL of sheep of genotype AE was greater (p = 0.027) than for sheep of genotype AA. The OpSD of sheep of genotype AA was less (p = 0.017) than sheep with the AE genotype, and the CVOp of sheep with genotype AA was less (p = 0.018) than sheep with genotype AE. Further studies are required to confirm the role of variation in KRTAP8-1 in improving quality wool production.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Syed M Jamal
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Huitong Zhou
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Jon G H Hickford
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
4
|
Li S, Xi Q, Zhao F, Wang J, He Z, Hu J, Liu X, Luo Y. Short Communication: A highly polymorphic caprine keratin-associated protein gene identified and its effect on cashmere traits. J Anim Sci 2021; 99:6346686. [PMID: 34370022 DOI: 10.1093/jas/skab233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 11/14/2022] Open
Abstract
Five keratin-associated protein 6 genes (KRTAP6) have been identified in sheep and variation in some KRTAP6 has been associated with wool fibre diameter-related traits, but none of these homologues has been identified in goats. In this study, we reported the identification of the sheep KRTAP6-5 homologue on goat chromosome 1 and PCR-single strand conformation polymorphism analysis in 300 Longdong cashmere goats revealed the existence of twelve variant sequences. Both coding region and 3'UTR of the putative caprine KRTAP6-5 displayed a biggest sequence similarity to ovine KRTAP6-5 gene. This suggested that the gene represents caprine KRTAP6-5 sequences, and these sequences composed twenty three genotypes which was the most polymorphism gene in KRTAPs that have been studied. Among these sequences, fifteen nucleotide substitutions and a 24-bp insertion/detection were identified. Variation in goat KRTAP6-5 was associated with variation in mean fibre diameter, suggesting that KRTAP6-5 is worthy of further study in the context of variation in cashmere traits.
Collapse
Affiliation(s)
- Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Qiming Xi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Wang Y, Zheng Y, Guo D, Zhang X, Guo S, Hui T, Yue C, Sun J, Guo S, Bai Z, Cai W, Zhang X, Fan Y, Wang Z, Bai W. m6A Methylation Analysis of Differentially Expressed Genes in Skin Tissues of Coarse and Fine Type Liaoning Cashmere Goats. Front Genet 2020; 10:1318. [PMID: 32038703 PMCID: PMC6987416 DOI: 10.3389/fgene.2019.01318] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/03/2019] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common internal modification in mRNAs of all higher eukaryotes. Here we perform two high-throughput sequencing methods, m6A-modified RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to identify key genes with m6A modification in cashmere fiber growth. A total of 9,085 m6A sites were differentially RNA m6A methylated as reported from by MeRIP-seq, including 7,170 upregulated and 1,915 downregulated. In addition, by comparing m6A-modified genes between the fine-type Liaoning cashmere goat (FT-LCG) and coarse-type Liaoning Cashmere Goat (CT-LCG) skin samples, we obtain 1,170 differentially expressed genes. In order to identify the differently methylated genes related to cashmere fiber growth, 19 genes were selected to validate by performing qRT-PCR in FT-LCG and CT-LCG. In addition, GO enrichment analysis shows that differently methylated genes are mainly involved in keratin filament and intermediate filament. These findings provide a theoretical basis for future research on the function of m6A modification during the growth of cashmere fiber.
Collapse
Affiliation(s)
- Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | - Xinghui Zhang
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | | | - Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Suping Guo
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixing Fan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Daverio MS, Anello M, Alcolea Ersinger V, Alvarez S, Frank E, Vidal-Rioja L, Di Rocco F. Identification of llama KRTAP7-1 and KRTAP8-1 fiber genes and polymorphism screening. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Li G, Xiong H, Xi D, Memon S, Wang L, Liu X, Deng W. An examination of melanogenic traits and <i>TYRP1</i> polymorphism in Nanping and Romney Marsh sheep breeds. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-131-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The effects of mutations of the gene for tyrosinase-related
protein 1 (TYRP1) on the black muscles and coat color in Nanping
black-boned sheep were investigated. Tyrosinase activity and melanin content
in plasma were measured and compared in three random groups of sheep: Nanping
black-boned (101 heads), Nanping normal (106 heads) and Romney Marsh sheep
(82 heads, Ovis aries). Eight exons and their partial flanking
regions of the TYRP1 gene were amplified. Six intronic mutations and
six exonic polymorphisms including two non-synonymous mutations [c.203C > T
(p.A68V) and c.1202T > C (p.V401A)] were identified. Using a
bi-directional polymerase chain reaction allele-specific amplification
(bi-PASA) of the mutation c.203C > T it was shown that the frequencies of
allele C in the Nanping black-boned, Nanping normal and Romney Marsh sheep
were respectively 0.955, 0.967 and 0.744. For the mutation c.1202T > C,
the frequencies of allele T in the three populations of sheep were
respectively 0.777, 0.745 and 0.793 as measured using the single-strand
conformation polymorphism. When the data from sheep of all three populations
with the CC genotype of SNP c.203C > T were pooled, it was found that there
was significantly higher (P < 0.05) tyrosinase activity, content of
alkali-soluble melanin and ratio of eumelanin : total melanin than
in the plasma of sheep with the CT and TT genotypes. This was not so within each
of the three groups of sheep. No significant effect of the TRYP1
genotype on coat color was found. Further studies will be necessary to
determine the cause of the black traits in Nanping black-boned sheep.
Collapse
|
8
|
Wang J, Che L, Hickford JGH, Zhou H, Hao Z, Luo Y, Hu J, Liu X, Li S. Identification of the Caprine Keratin-Associated Protein 20-2 (KAP20-2) Gene and Its Effect on Cashmere Traits. Genes (Basel) 2017; 8:genes8110328. [PMID: 29149036 PMCID: PMC5704241 DOI: 10.3390/genes8110328] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 01/27/2023] Open
Abstract
The gene encoding the high glycine/tyrosine keratin-associated protein 20-2 (KAP20-2) gene has been described in humans, but has not been identified in any livestock species. A search for similar sequences in the caprine genome using the human KAP20-2 gene (KRTAP20-2) revealed a homologous sequence on chromosome 1. Three different banding patterns representing distinct sequences (A–C) in Longdong cashmere goats were identified using polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) analysis. These sequences shared high sequence similarity with the human and mouse KRTAP20-2 sequences, suggesting that A–C are caprine variants of the human and mouse genes. Four single nucleotide polymorphisms (SNPs) were identified, and three of them were non-synonymous. KRTAP20-2 was found to be expressed in secondary hair follicles, but not in heart, liver, lung, kidney, spleen, or longissimus dorsi muscle. The presence of A was associated with increased cashmere fibre weight, while the presence of B was associated with a decrease in cashmere fibre weight and curly fibre length. Goats with genotype AA had a higher cashmere fibre weight and a higher curly fibre length than those with genotypes AB or BB. These results indicate that caprine KRTAP20-2 variation may have value as a genetic marker for improving cashmere fibre weight.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Longjie Che
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
9
|
|
10
|
Jin M, Cao Q, Wang R, Piao J, Zhao F, Piao J. Molecular characterization and expression pattern of a novel Keratin-associated protein 11.1 gene in the Liaoning cashmere goat ( Capra hircus). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:328-337. [PMID: 27383810 PMCID: PMC5337911 DOI: 10.5713/ajas.16.0078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/20/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE An experiment was conducted to determine the relationship between the KAP11.1 and the regulation wool fineness. METHODS In previous work, we constructed a skin cDNA library and isolated a full-length cDNA clone termed KAP11.1. On this basis, we conducted a series of bioinformatics analysis. Tissue distribution of KAP11.1 mRNA was performed using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis. The expression of KAP11.1 mRNA in primary and secondary hair follicles was performed using real-time PCR (real-time polymerase chain reaction) analysis. The expression location of KAP11.1 mRNA in primary and secondary hair follicles was performed using in situ hybridization. RESULTS Bioinformatics analysis showed that KAP11.1 gene encodes a putative 158 amino acid protein that exhibited a high content of cysteine, serine, threonine, and valine and has a pubertal mammary gland) structural domain. Secondary structure prediction revealed a high proportion of random coils (76.73%). Semi-quantitative RT-PCR showed that KAP11.1 gene was expressed in heart, skin, and liver, but not expressed in spleen, lung and kidney. Real time PCR results showed that the expression of KAP11.1 has a higher expression in catagen than in anagen in the primary hair follicles. However, in the secondary hair follicles, KAP11.1 has a significantly higher expression in anagen than in catagen. Moreover, KAP11.1 gene has a strong expression in inner root sheath, hair matrix, and a lower expression in hair bulb. CONCLUSION We conclude that KAP11.1 gene may play an important role in regulating the fiber diameter.
Collapse
Affiliation(s)
- Mei Jin
- Faculty of Life Science, Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian 116081, China
| | - Qian Cao
- Faculty of Life Science, Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian 116081, China
| | - Ruilong Wang
- Faculty of Life Science, Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian 116081, China
| | - Jun Piao
- Faculty of Life Science, Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian 116081, China
| | - Fengqin Zhao
- Faculty of Life Science, Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian 116081, China
| | - Jing'ai Piao
- Faculty of Life Science, Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian 116081, China
| |
Collapse
|
11
|
Variation and expression of KAP9.2 gene affecting cashmere trait in goats. Mol Biol Rep 2012; 39:10525-9. [PMID: 23053952 DOI: 10.1007/s11033-012-1937-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Keratin-associated proteins 9.2 (KAP9.2) gene encodes one of the ultra high sulfur KAPs. Variation in KAP genes may affect the structure of KAPs and hence cashmere characteristics. In order to test the association between the polymorphism of KAP9.2 gene and cashmere trait, DNA sequencing was used to detect a novel C/T polymorphism of KAP9.2 gene from a genomic DNA pool. The mutation could be recognized by Pst I restriction enzyme. To Shanbei white cashmere goat, Inner Mongolia white cashmere goat and Guanzhong dairy goat, the genotypic frequencies of TT, TC and CC from total 1,236 animals were as follows: 0.047, 0.519 and 0.434; 0.180, 0.592 and 0.228; 0.431, 0.544 and 0.025. The allelic frequencies of T and C were 0.307 and 0.693; 0.476 and 0.524; 0.703 and 0.297, respectively, in breeds mentioned above. The frequency of C allele between cashmere and dairy goat was significant (P < 0.01). To provide support for the hypothesis that SNP 586 was responsible for KAP9.2 expression, quantitative real-time PCR analysis revealed that the expression level of KAP9.2 was reduced in individuals bearing genotype CC compared with TT individuals, suggesting that C was the nucleotide causing decreased expression of KAP9.2 or was in linkage disequilibrium with the causative SNP. The 586C/T SNP found in this study might control translation or stability of KAP9.2 mRNA, which would be beneficial for marker assistant selection in cashmere goat breeding.
Collapse
|
12
|
Xi D, Wu M, Fan Y, Huo Y, Leng J, Gou X, Mao H, Deng W. Isolation and characteristics of the melanocortin 1 receptor gene (MC1R) in the Chinese yakow (Bos grunniens×Bos taurus). Gene 2012; 498:259-63. [PMID: 22391095 DOI: 10.1016/j.gene.2012.02.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/20/2012] [Indexed: 11/18/2022]
Abstract
The Chinese yakow is the offspring of yak (Bos grunniens) and Yellow cattle (Bos taurus). The melanocortin 1receptor gene (MC1R) plays a crucial role in determining coat colour of mammals. To investigate the relationship of polymorphism of the MC1R with coat colour in the Chinese yakow, the coding sequence (CDS) and the flanking region of MC1R were sequenced from 84 Chinese yakow samples and compared with the sequences of the MC1R from other bovid species. A fragment of 1134 base pair (bp) sequences including the full CDS (954bp) and parts of the 5'- and 3'-untranslated regions (162 and 18bp, respectively) of the Chineseyakow MC1R were obtained. A total of 13 single nucleotide polymorphisms (SNPs) including 4 SNPs (T-129C, A-127C, C-106T, G-1A) in the 5'-untranslated region and 9 SNPs (C201T, T206C, C340A, C375T, T663C, G714C, C870T, G871A and T890C) in the CDS were identified, revealing high genetic variability. Four novel SNPs including T206C, G714C, C870T and T890C, which have not been reported previously in bovid species, were retrieved. Within 9 coding SNPs, C201T, C375T, T663C and C870T were silent mutations, while T206C, C340A, G714C, G871A and T890C were mis-sense mutations, corresponding to amino acid changes p.L69P, p.Q114K, p.K238N, p.A291N and p.I297T, respectively. Amino acid sequences alignment showed a more than 96% similarity with other ruminates. However, three classical bovine MC1R loci the E(D), E(+) and e were not retrieved in the Chinese yakow, indicating other genes or factors could be involved in affecting coat colour in this species.
Collapse
Affiliation(s)
- Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Xi D, Liu Q, Huo Y, Sun Y, Leng J, Gou X, Mao H, Deng W. Nucleotide diversity of the melanocortin 1 receptor gene (MC1R) in the gayal (Bos frontalis). Mol Biol Rep 2012; 39:7293-301. [PMID: 22307797 DOI: 10.1007/s11033-012-1559-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 01/24/2012] [Indexed: 02/02/2023]
Abstract
The melanocortin 1 receptor gene (MC1R) plays a crucial role in determining coat colour of mammals. To investigate the relationship of polymorphism of the MC1R with coat colour in gayal, the coding sequence (CDS), and the 5'- and 3'-untranslated regions (UTR) of the MC1R were sequenced from 63 samples from the gayal and compared with the sequences of the MC1R from other ruminant species. A sequence of 1,136 bp including the whole CDS (954 bp) and parts of the 5'- and 3'-UTR (164 and 18 bp, respectively) of the gayal MC1R was obtained. A total of nine single nucleotide polymorphisms (SNPs) including four SNPs (c.-129T>C, c.-127A>C, c.-106C>T, c.-1G>A) in the 5'-UTR and five SNPs (c.201C>T, c.583C>T, c.663T>C, c.871A>G and c.876T>C) in the CDS were detected, revealing high genetic diversity. Three novel coding SNPs including c.201C>T, c.583C>T and c.876T>C, which have not been reported previously in bovid species, were retrieved. Within five coding SNPs, c.201C>T, c.663T>C and c.876T>C were silent mutations, while c.583C>T and c.871A>G were mis-sense mutations, resulting in changes in the amino acids located in the fifth (p.L195F) and seventh (p.T291A) transmembrane regions, respectively. The alignment of amino acid sequences was found to be very similar to those for other bovid species. It was demonstrated, using the functional effect prediction, that the p.T291A amino acid replacement could have an effect on MC1R protein function but not for the p.L195F substitution. Using phylogenetic analyses it was revealed that the gayal has a close genetic relationship with the yak. However, three classical bovine MC1R loci the E (D), E (+) and e were not retrieved in the gayal, indicating other genes or factors could affect coat colour in this species.
Collapse
Affiliation(s)
- Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Xi D, Wu M, Fan Y, Liu Q, Leng J, Gou X, Mao H, Deng W. Polymorphisms of the insulin-like growth factor-binding protein 3 gene (IGFBP3) in gayal (Bos frontalis). Gene 2012; 497:98-102. [PMID: 22310386 DOI: 10.1016/j.gene.2012.01.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/15/2011] [Accepted: 01/21/2012] [Indexed: 10/14/2022]
Abstract
The gene coding for insulin-like growth factor-binding protein 3 (IGFBP3) is important for regulation of growth, development and metabolism in mammals. The present investigation was conducted to study nucleotide polymorphism of the IGFBP3 in gayal (Bos frontalis) and to compare the variations with those which occur in other ruminants. A fragment of 645 base pairs of the IGFBP3 covering a part of exon 2, the complete intron 2 and exon 3 and a part of intron 3 was amplified, sequenced (n=46) and digested (n=79) with HaeIII restriction enzyme from 125 collected gayal samples. Nine single nucleotide polymorphisms (SNPs) [C14T, A122C, C137T, G144C, C155T, G213A, C279A, G334A and G460A] were identified and located in intron 2, revealing high genetic variability. The alignment of nucleotide sequences was found to be very similar to those for other bovid species. Sequencing and HaeIII digestion showed that frequency of alleles C and A [consisting of fragments of sizes 56, 64, 228, 264, 282, 298 and 497 bp (CC genotype)] was 0.96 and 0.04 for the SNP C279A. Moreover, the genotype frequency of the SNP C279A in gayal was compared with that in other ruminants and it appears that this polymorphism may be associated with low fat content and rapid growth in this rare species.
Collapse
Affiliation(s)
- Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Genetic variability of the coding region for the prion protein gene (PRNP) in gayal (Bos frontalis). Mol Biol Rep 2011; 39:2011-20. [PMID: 21633886 DOI: 10.1007/s11033-011-0948-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
The gayal (Bos frontalis) is a rare semi-wild bovid species in which bovine spongiform encephalopathy (BSE) has not been reported. Polymorphisms of the prion protein gene (PRNP) have been correlated significantly with resistance to BSE. In this study, the coding region of PRNP was cloned and characterized in samples from 125 gayal. A total of ten single nucleotide polymorphisms (SNPs), including six silent mutations (C60T, G75A, A108T, G126A, C357T and C678T) and four mis-sense mutations (C8A, G145A, G461A and C756G), corresponding to amino acids T3K, G49S9, N154S and I252M were identified, revealing high genetic diversity. Three novel SNPs including C60T, G145A and C756G, which have not been reported previously in bovid species, were retrieved. There also was one insertion-deletion (187Del24) at the N-terminal octapeptide repeat region. Alignment of nucleotide and amino acid sequences showed a high degree of similarity with other bovid species. Using phylogenetic analyses it was revealed that gayal has a close genetic relationship with Zebu cattle. In short, preliminary information is provided about genotypes of the PRNP in gayal. This could assist with the study of the pathogenesis of transmissible spongiform encephalopathies and cross species transmission as well as a molecular breeding project for gayal in China.
Collapse
|
16
|
Qin LH, Zhao YM, Bao YH, Bai WL, Chong J, Zhang GL, Zhang JB, Zhao ZH. Polymorphism of the prion protein gene (PRNP) in two Chinese indigenous cattle breeds. Mol Biol Rep 2010; 38:4197-204. [PMID: 21120616 DOI: 10.1007/s11033-010-0541-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Prion protein (PRNP) gene has been located at position q17 of chromosome 13 in cattle. The polymorphisms of PRNP gene might be associated with BSE susceptibility. In the present work, we investigated the polymorphisms of PRNP gene, including SNP in exon 3, 23-bp indel in promoter region, 12-bp indel in intron 1 in 2 Chinese indigenous cattle breeds of northeast China. Eighty-six animals from Yanbian (34) and Chinese Red Steppes (52) were genotyped at PRNP locus by analyzing genomic DNA. A total of 4 single nucleotide polymorphism (SNP) sites were revealed in the PRNP gene exon 3 of the 2 cattle breeds investigated. Three of these SNPs were non-synonymous mutations that resulted in the amino acid exchanges (K119N, S154N, and M177V), and one is silent nucleotide substitutions (A234G). The two amino acid mutations of S154N and M177V were detected only in Yanbian with a very low frequency (0.0147), and they appears to be absent in Chinese Red Steppes. The average gene heterozygosity (He), effective allele numbers (Ne), Shannon's information index (I) and polymorphism information content (PIC) were 0.3088, 1.5013, 0.3814 and 0.2000 in Yanbian, respectively, being relatively higher than that of Chinese Red Steppes (0.2885, 1.4985, 0.3462 and 0.1873, respectively). In 23-bp indel and 12-bp indel loci, three different genotypes were identified in both Yanbian and Chinese Red Steppes breeds. Based 23- and 12-bp indels, four haplotypes was constructed in the 2 Chinese cattle breeds, of which the 23-bp (-)/12-bp (-) was main haplotypes accounting for more than 50% of the total in both Yanbian and Chinese Red Steppes breeds. These results might be useful in understanding the genetic characteristics of PRNP gene in Chinese indigenous cattle breeds.
Collapse
Affiliation(s)
- L H Qin
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bai WL, Zhou CY, Ren Y, Yin RH, Jiang WQ, Zhao SJ, Zhang SC, Zhang BL, Luo GB, Zhao ZH. Characterization of the GHR gene genetic variation in Chinese indigenous goat breeds. Mol Biol Rep 2010; 38:471-9. [PMID: 20364329 DOI: 10.1007/s11033-010-0130-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 03/23/2010] [Indexed: 11/26/2022]
Abstract
The aim of the present work was to investigate single nucleotide polymorphism (SNP) of growth hormone receptor (GHR) gene exon 10, characterize the genetic variation in three Chinese indigenous goat breeds, and search for its potential association with cashmere traits. In this study, a polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) protocol has been developed for rapid genotyping of the GHR gene in goats. One hundred seventy-eight goats from Liaoning Cashmere (96), Inner Mongolia White Cashmere (40), and Chengdu Grey (42) breeds in China were genotyped at GHR locus using the protocol developed. In all goat breeds investigated, a SNP in exon 10 of GHR gene has been identified by analyzing genomic DNA. The polymorphism consists of a single nucleotide substitution A → G, resulting in two alleles named, respectively, A and G based on the nucleotide at the position. The allele A was found to be more common in the animals investigated, and seems to be more consistent with cattle and zebu at this polymorphic site found in goats. The Hardy-Weinberg equilibrium of genotype distributions of GHR locus was verified in Liaoning Cashmere, and Inner Mongolia White Cashmere breeds. According to the classification of polymorphism information content (PIC), Chengdu Grey was less polymorphic than Liaoning Cashmere and Inner Mongolia White Cashmere breeds at this locus. The phylogenetic tree of different species based on the nucleotide sequences of GHR gene exon 10 is generally in agreement with the known species relationship. No significant association was found between the polymorphism revealed and the cashmere traits analyzed in present work.
Collapse
Affiliation(s)
- W L Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Deng W, Tan Y, Wang X, Xi D, He Y, Yang S, Mao H, Gao S. Molecular cloning, sequence characteristics, and polymorphism analyses of the tyrosinase-related protein 2 / DOPAchrome tautomerase gene of black-boned sheep (Ovis aries). Genome 2010; 52:1001-11. [PMID: 19953128 DOI: 10.1139/g09-078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tyrosinase-related protein 2 (TYRP2) plays a pivotal role in the biosynthesis of eumelanin. Black-boned sheep have excessive melanin and eumelanin, resulting in dark (black) muscles and organs. This study was designed to investigate the effects of variants of the TYRP2 gene on black traits and coat colour of black-boned sheep. Melanin traits were measured in three populations of sheep (Nanping black-boned, Nanping normal, and Romney Marsh) and compared in this study. From the TYRP2 cDNA, all 8 exons and their flanking regions were amplified and characterized. Fifteen single nucleotide polymorphisms (SNPs) were identified in the exons and their flanking regions. Five exonic polymorphic sites, including two synonymous (c.93T>G and c.1140C>T) and three non-synonymous mutations (c.163C>T (p.R55W), c.605G>A (p.R202H), and c.1141A>G (p.T381A)), were retrieved. PCR-RFLP analysis of c.605G>A showed that the frequencies of allele G in the Nanping black-boned, Nanping normal, and Romney Marsh sheep were 0.632, 0.603, and 0.886, respectively. Sheep with the GG genotype had significantly (P < 0.05) lower tyrosinase activity, alkali-soluble melanin content, and ratio of eumelanin : total melanin than sheep with GA and AA genotypes when measured across all investigated samples but not when samples within each population of sheep were compared. However, there was no association of TYRP2 genotype at a single SNP position with coat colour across populations. Nonetheless, the two breeds with higher overall tyrosinase activity did produce darker and more varied coat colours than the breed with lower tyrosinase activity.
Collapse
Affiliation(s)
- Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jin M, Wang L, Li S, Xing MX, Zhang X. Characterization and expression analysis of KAP7.1, KAP8.2 gene in Liaoning new-breeding cashmere goat hair follicle. Mol Biol Rep 2010; 38:3023-8. [PMID: 20151326 DOI: 10.1007/s11033-010-9968-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/19/2010] [Indexed: 12/19/2022]
Abstract
Keratin-associated protein is one of the major structural proteins of the hair, whose content in hair has important effect on the quality of cashmere. In order to study the relationship between HGTKAP gene expression and cashmere fineness, the quantitative real-time RT-PCR (qRT-PCR) was firstly used to detect the levels of KAP7.1, KAP8.2 gene expression in the primary and secondary hair follicles; semi-quantitative RT-PCR was used to detect whether KAP7.1, KAP8.2 gene are expressed in heart, liver, spleen, lung, kidney tissues; and in situ hybridization(ISH) to detect KAP7.1 gene expression location. qRT-PCR result showed that the expression of both KAP7.1 and KAP8.2 gene in the secondary hair follicles are significantly higher than that in the primary follicles, relative quantitative analysis obtained that KAP7.1 was 2.28 times, while KAP8.2 was 2.71 times. Semi-quantitative RT-PCR results revealed that KAP 7.1 and KAP8.2 mRNA were not detected in the heart, liver, spleen, lung and kidney tissues, demonstrating that KAP7.1 and KAP8.2 were specially expressed in hair follicles, participating in hair formation. Moreover, KAP7.1 gene has a strong expression in the cortical layer, inner root sheath of the primary follicles and the cortical layer, inner root sheath and hair matrix of the secondary hair follicles by ISH analysis. Taken together, the evidence presented here indicated that in the formation of cashmere and wool, differential expression of these two genes in the primary and secondary hair follicles may have an important role in regulating the fiber diameter.
Collapse
Affiliation(s)
- M Jin
- College of Life Sciences, Liaoning Normal University, 116029 Dalian, People's Republic of China.
| | | | | | | | | |
Collapse
|