1
|
Xiao C, Liu Y, Zhao W, Liang Y, Cui C, Yang S, Fang W, Miao L, Yuan Z, Lin Z, Zhai B, Zhao Z, Zhang L, Ma H, Jin H, Cao Y. The comparison of meat yield, quality, and flavor between small-tailed Han sheep and two crossbred sheep and the verification of related candidate genes. Front Nutr 2024; 11:1399390. [PMID: 39149545 PMCID: PMC11324605 DOI: 10.3389/fnut.2024.1399390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction In Northeast China, Dorper and Australian White rams are commonly crossbred with small-tailed Han (STH) ewes to improve the offspring's meat yield and quality. However, the differences in traits and the flavor between the crossbred sheep and STH sheep remain unclear. In addition, the candidate genes potentially influencing the meat quality in the three sheep breeds require further verification. Methods A total of 18 2-month-old healthy rams were raised over a period of 5 months, which included 6 STH, 6 Dorper and small-tailed Han crossbred (Do × STH), and 6 Australian white and small-tailed Han crossbred (Au × STH) offspring. The differences in slaughter, meat quality traits, fatty acid and amino acid composition in the muscular longissimus dorsi (MLD), and volatile compounds in the semitendinosus muscle were compared between the sheep breeds. The candidate genes related to intramuscular fat (IMF) content and fatty acids were validated. Results The results of this study revealed that the crossbred sheep had higher body weight, carcass weight, bone weight, net meat weight, and IMF content than the STH sheep (p < 0.05). The Do × STH offspring had a higher pH value (24 h), moisture content, and cooking percentage; they also had redder and brighter meat color. The content of myristate, palmitic, and margaric acids in the crossbred sheep was higher than that in the STH sheep (p < 0.05). The Do × STH offspring had the highest saturated fatty acid content (p < 0.05). The Au × STH offspring had the highest protein content (p < 0.05). The arachidonic acid and amino acid (Asp, Ala, Ile, Leu, Lys, Thr, and essential amino acid) contents were higher in the STH sheep than in the crossbred sheep (p < 0.05). The odor activity value (OAV) analysis showed that most of the aldehydes in the Au × STH offspring had higher values. The PDK4 gene expression was positively associated with the IMF content and was negatively correlated with the linoleic acid content in the Do × STH sheep (p < 0.05). The TMEM273 gene expression was positively associated with linoleic and arachidonic acid contents and was negatively correlated with oleic and palmitic acid contents in the Do × STH sheep (p < 0.05). Discussion The results showed the differences between the crossbred sheep and STH sheep and provided the candidate genes related to meat quality in sheep.
Collapse
Affiliation(s)
- Cheng Xiao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Dummerstorf, Germany
- Institute of Agricultural and Environmental Sciences, Rostock University, Rostock, Germany
| | - Yu Liu
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wenjun Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- College of Agriculture, YanBian University, Yanji, China
| | - Yingjia Liang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chao Cui
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Shaoying Yang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - WenWen Fang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lisheng Miao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zihan Lin
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Bo Zhai
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhongli Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lichun Zhang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Huihai Ma
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Haiguo Jin
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yang Cao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|
2
|
Zhao L, Li F, Zhang X, Zhang D, Li X, Zhang Y, Zhao Y, Song Q, Huang K, Xu D, Cheng J, Wang J, Li W, Lin C, Wang W. Integrative analysis of transcriptomics and proteomics of longissimus thoracis of the Hu sheep compared with the Dorper sheep. Meat Sci 2022; 193:108930. [PMID: 35933909 DOI: 10.1016/j.meatsci.2022.108930] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 10/31/2022]
Abstract
Meat quality is becoming more important for sheep breeding programs. Meat quality is a complex trait affected by genetic and environmental factors. In the present study, an integrative analysis of the longissimus thoracis tissue transcriptome and proteome was conducted to identify genes, proteins, and pathways related to meat quality in sheep. The sheep breeds Hu and Dorper were considered. These breeds were compared for the differences in muscle fiber structure, chemical composition, and amino acid composition. In the Hu sheep vs. Dorper sheep comparison, 22 DEGs/DEPs showed the same mRNA and protein expression trends. These genes are associated with lipid transport, lipid metabolism, and muscular system development. Moreover, some pathways such as "lipid transport", "lipoprotein metabolic process", "Alanine, aspartate and glutamate metabolism", and "Arginine biosynthesis" were significantly enriched in this study. The reliability of the RNA-Seq results was verified by qRT-PCR. These findings provide new insights into the molecular mechanisms of meat quality in sheep.
Collapse
Affiliation(s)
- Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qizhi Song
- Linze County Animal Disease Prevention and Control Center of Gansu Province, Linze 734200, China
| | - Kai Huang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
3
|
Benítez R, Núñez Y, Ayuso M, Isabel B, Fernández-Barroso MA, De Mercado E, Gómez-Izquierdo E, García-Casco JM, López-Bote C, Óvilo C. Changes in Biceps femoris Transcriptome along Growth in Iberian Pigs Fed Different Energy Sources and Comparative Analysis with Duroc Breed. Animals (Basel) 2021; 11:ani11123505. [PMID: 34944282 PMCID: PMC8697974 DOI: 10.3390/ani11123505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The genetic mechanisms that regulate biological processes, such as skeletal muscle development and growth, or intramuscular fat deposition, have attracted great interest, given their impact on production traits and meat quality. In this sense, a comparison of the transcriptome of skeletal muscle between phenotypically different pig breeds, or along growth, could be useful to improve the understanding of the molecular processes underlying the differences in muscle metabolism and phenotypic traits, potentially driving the identification of causal genes, regulators and metabolic pathways involved in their variability. Abstract This experiment was conducted to investigate the effects of developmental stage, breed, and diet energy source on the genome-wide expression, meat quality traits, and tissue composition of biceps femoris muscle in growing pure Iberian and Duroc pigs. The study comprised 59 Iberian (IB) and 19 Duroc (DU) animals, who started the treatment at an average live weight (LW) of 19.9 kg. The animals were kept under identical management conditions and fed two diets with different energy sources (6% high oleic sunflower oil or carbohydrates). Twenty-nine IB animals were slaughtered after seven days of treatment at an average LW of 24.1 kg, and 30 IB animals plus all the DU animals were slaughtered after 47 days at an average LW of 50.7 kg. The main factors affecting the muscle transcriptome were age, with 1832 differentially expressed genes (DEGs), and breed (1055 DEGs), while the effect of diet on the transcriptome was very small. The results indicated transcriptome changes along time in Iberian animals, being especially related to growth and tissue development, extracellular matrix (ECM) composition, and cytoskeleton organization, with DEGs affecting relevant functions and biological pathways, such as myogenesis. The breed also affected functions related to muscle development and cytoskeleton organization, as well as functions related to solute transport and lipid and carbohydrate metabolism. Taking into account the results of the two main comparisons (age and breed effects), we can postulate that the Iberian breed is more precocious than the Duroc breed, regarding myogenesis and muscle development, in the studied growing stage.
Collapse
Affiliation(s)
- Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Miriam Ayuso
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, B-2610 Wilrijk, Belgium;
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Miguel A. Fernández-Barroso
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Eduardo De Mercado
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Emilio Gómez-Izquierdo
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
- Correspondence: ; Tel.: +34-91-3471492
| |
Collapse
|
4
|
Hou X, Wang L, Zhao F, Liu X, Gao H, Shi L, Yan H, Wang L, Zhang L. Genome-Wide Expression Profiling of mRNAs, lncRNAs and circRNAs in Skeletal Muscle of Two Different Pig Breeds. Animals (Basel) 2021; 11:ani11113169. [PMID: 34827901 PMCID: PMC8614396 DOI: 10.3390/ani11113169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Variation exists in muscle-related traits, such as muscle growth and meat quality, between obese and lean pigs. In this study, the transcriptome profiles of skeletal muscle between Beijing Blackand Yorkshire pigs were characterized to explore the molecular mechanism underlying skeletal muscle-relatedtraits. Gene Ontology (GO) and KEGG pathway enrichment analyses showed that differentially expressed mRNAs, lncRNAs, and circRNAs involved in skeletal muscle development and fatty acid metabolism played a key role in the determination of muscle-related traits between different pig breeds. These results provide candidate genes responsible for muscle phenotypic variation and are valuable for pig breeding. Abstract RNA-Seq technology is widely used to analyze global changes in the transcriptome and investigate the influence on relevant phenotypic traits. Beijing Black pigs show differences in growth rate and meat quality compared to western pig breeds. However, the molecular mechanisms responsible for such phenotypic differences remain unknown. In this study, longissimus dorsi muscles from Beijing Black and Yorkshire pigs were used to construct RNA libraries and perform RNA-seq. Significantly different expressions were observed in 1051 mRNAs, 322 lncRNAs, and 82 circRNAs. GO and KEGG pathway annotation showed that differentially expressed mRNAs participated in skeletal muscle development and fatty acid metabolism, which determined the muscle-related traits. To explore the regulatory role of lncRNAs, the cis and trans-target genes were predicted and these lncRNAswere involved in the biological processes related to skeletal muscle development and fatty acid metabolismvia their target genes. CircRNAs play a ceRNA role by binding to miRNAs. Therefore, the potential miRNAs of differentially expressed circRNAs were predicted and interaction networks among circRNAs, miRNAs, and key regulatory mRNAs were constructed to illustrate the function of circRNAs underlying skeletal muscle development and fatty acid metabolism. This study provides new clues for elucidating muscle phenotypic variation in pigs.
Collapse
|
5
|
Núñez Y, Radović Č, Savić R, García-Casco JM, Čandek-Potokar M, Benítez R, Radojković D, Lukić M, Gogić M, Muñoz M, Fontanesi L, Óvilo C. Muscle Transcriptome Analysis Reveals Molecular Pathways Related to Oxidative Phosphorylation, Antioxidant Defense, Fatness and Growth in Mangalitsa and Moravka Pigs. Animals (Basel) 2021; 11:ani11030844. [PMID: 33809803 PMCID: PMC8002519 DOI: 10.3390/ani11030844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/28/2022] Open
Abstract
This work was aimed at evaluating loin transcriptome and metabolic pathway differences between the two main Serbian local pig breeds with divergent characteristics regarding muscle growth and fatness, as well as exploring nutrigenomic effects of tannin supplementation in Mangalitsa (MA) pigs. The study comprised 24 Mangalitsa and 10 Moravka (MO) males, which were kept under identical management conditions. Mangalitsa animals were divided in two nutritional groups (n = 12) receiving a standard (control) or tannin-supplemented diet (1.5%; MAT). Moravka pigs were fed the standard mixture. All animals were slaughtered at a similar age; 120 kg of average live weight (LW) and loin tissue was used for RNA-seq analysis. Results showed 306 differentially expressed genes (DEGs) according to breed, enriched in genes involved in growth, lipid metabolism, protein metabolism and muscle development, such as PDK4, FABP4, MYOD1 and STAT3, as well as a relevant number of genes involved in mitochondrial respiratory activity (MT-NDs, NDUFAs among others). Oxidative phosphorylation was the most significantly affected pathway, activated in Mangalitsa muscle, revealing the basis of a different muscle metabolism. Also, many other relevant pathways were affected by breed and involved in oxidative stress response, fat accumulation and development of skeletal muscle. Results also allowed the identification of potential regulators and causal networks such as those controlled by FLCN, PPARGC1A or PRKAB1 with relevant regulatory roles on DEGs involved in mitochondrial and lipid metabolism, or IL3 and TRAF2 potentially controlling DEGs involved in muscle development. The Tannin effect on transcriptome was small, with only 23 DEGs, but included interesting ones involved in lipid deposition such as PPARGC1B. The results indicate a significant effect of the breed on muscle tissue gene expression, affecting relevant biological pathways and allowing the identification of strong regulatory candidate genes to underlie the gene expression and phenotypic differences between the compared groups.
Collapse
Affiliation(s)
- Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Čedomir Radović
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | | | - Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Dragan Radojković
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Miloš Lukić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Marija Gogić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
- Correspondence: ; Tel.: +34-913471492
| |
Collapse
|
6
|
Omics Application in Animal Science-A Special Emphasis on Stress Response and Damaging Behaviour in Pigs. Genes (Basel) 2020; 11:genes11080920. [PMID: 32796712 PMCID: PMC7464449 DOI: 10.3390/genes11080920] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing stress resilience of livestock is important for ethical and profitable meat and dairy production. Susceptibility to stress can entail damaging behaviours, a common problem in pig production. Breeding animals with increased stress resilience is difficult for various reasons. First, studies on neuroendocrine and behavioural stress responses in farm animals are scarce, as it is difficult to record adequate phenotypes under field conditions. Second, damaging behaviours and stress susceptibility are complex traits, and their biology is not yet well understood. Dissecting complex traits into biologically better defined, heritable and easily measurable proxy traits and developing biomarkers will facilitate recording these traits in large numbers. High-throughput molecular technologies (“omics”) study the entirety of molecules and their interactions in a single analysis step. They can help to decipher the contributions of different physiological systems and identify candidate molecules that are representative of different physiological pathways. Here, we provide a general overview of different omics approaches and we give examples of how these techniques could be applied to discover biomarkers. We discuss the genetic dissection of the stress response by different omics techniques and we provide examples and outline potential applications of omics tools to understand and prevent outbreaks of damaging behaviours.
Collapse
|
7
|
Purfield DC, Evans RD, Berry DP. Breed- and trait-specific associations define the genetic architecture of calving performance traits in cattle. J Anim Sci 2020; 98:5829000. [PMID: 32365208 PMCID: PMC7247537 DOI: 10.1093/jas/skaa151] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
Reducing the incidence of both the degree of assistance required at calving, as well as the extent of perinatal mortality (PM) has both economic and societal benefits. The existence of heritable genetic variability in both traits signifies the presence of underlying genomic variability. The objective of the present study was to locate regions of the genome, and by extension putative genes and mutations, that are likely to be underpinning the genetic variability in direct calving difficulty (DCD), maternal calving difficulty (MCD), and PM. Imputed whole-genome single-nucleotide polymorphism (SNP) data on up to 8,304 Angus (AA), 17,175 Charolais (CH), 16,794 Limousin (LM), and 18,474 Holstein-Friesian (HF) sires representing 5,866,712 calving events from descendants were used. Several putative quantitative trait loci (QTL) regions associated with calving performance both within and across dairy and beef breeds were identified, although the majority were both breed- and trait-specific. QTL surrounding and encompassing the myostatin (MSTN) gene were associated (P < 5 × 10−8) with DCD and PM in both the CH and LM populations. The well-known Q204X mutation was the fifth strongest association with DCD in the CH population and accounted for 5.09% of the genetic variance in DCD. In contrast, none of the 259 segregating variants in MSTN were associated (P > × 10−6) with DCD in the LM population but a genomic region 617 kb downstream of MSTN was associated (P < 5 × 10−8). The genetic architecture for DCD differed in the HF population relative to the CH and LM, where two QTL encompassing ZNF613 on Bos taurus autosome (BTA)18 and PLAG1 on BTA14 were identified in the former. Pleiotropic SNP associated with all three calving performance traits were also identified in the three beef breeds; 5 SNP were pleiotropic in AA, 116 in LM, and 882 in CH but no SNP was associated with more than one trait within the HF population. The majority of these pleiotropic SNP were on BTA2 surrounding MSTN and were associated with both DCD and PM. Multiple previously reported, but also novel QTL, associated with calving performance were detected in this large study. These also included QTL regions harboring SNP with the same direction of allele substitution effect for both DCD and MCD thus contributing to a more effective simultaneous selection for both traits.
Collapse
Affiliation(s)
- Deirdre C Purfield
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Co. Cork, Ireland.,Irish Cattle Breeding Federation, Bandon, Co. Cork, Ireland
| | - Ross D Evans
- Irish Cattle Breeding Federation, Bandon, Co. Cork, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
8
|
Fan H, Hou Y, Sahana G, Gao H, Zhu C, Du L, Zhao F, Wang L. A Transcriptomic Study of the Tail Fat Deposition in Two Types of Hulun Buir Sheep According to Tail Size and Sex. Animals (Basel) 2019; 9:ani9090655. [PMID: 31491862 PMCID: PMC6770480 DOI: 10.3390/ani9090655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Based on tail types, Hulun Buir sheep were divided into two lines including small and big fat-tailed, but these two lines have similar genetic background. In this study, we investigated the morphology and transcription level differences of tail fat between these two lines. The RNA-seq analyses indicated several differentially expressed genes when compared between sexes or two tail sizes. Interestingly, we also found an obvious sex difference in the fat metabolism in Hulun Buir sheep. Two different co-expression networks were only shown either in male or in female sheep. Our findings will provide theoretical background in understanding the genetic mechanism of fat deposition in sheep. Abstract Hulun Buir sheep of similar genetic background were divided into two lines based on tail types: Small- and big fat-tailed. To explore the molecular mechanism of fat deposition in sheep tails, we firstly evaluated the morphology and transcription level differences of tail fat between these two lines. RNA-Seq technology was used to identify differentially expressed genes (DEGs) in phenotypic extremes of tail sizes. Five comparisons were performed taking into account two factors, sex and tail type. We screened out 373 DEGs between big-tailed and small-tailed Hulun Buir sheep, and 775 and 578 DEGs between two types of tails in male and female sheep, respectively. The results showed an obvious sex difference in the fat metabolism in sheep based on gene ontology (GO), pathway, and network analyses. Intriguingly, there were two different co-expression networks only respectively shown in male and female sheep, which were insulin-related network acting on upstream pathways and PPARG-related network effect in downstream pathways. Furthermore, these two networks were linked by a classic pathway of regulating adipogenesis. This is the first study to investigate the sex differences of fat metabolism in domestic animals, and it demonstrates a new experimental way to study fat metabolism. Our findings will provide theoretical background in understanding the tail-size phenotype in sheep and can be exploited in breeding small-tailed sheep.
Collapse
Affiliation(s)
- Hongying Fan
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Mariculture, Ocean University of China, Qingdao 266000, China
| | - Yali Hou
- Beijing Institute of Genomics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101, China
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Hongding Gao
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Caiye Zhu
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixin Du
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Zhao
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lixian Wang
- Key Laborary of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Early differential gene expression in beef Longissimus thoracis muscles from carcasses with normal (<5.8) and high (>5.9) ultimate pH. Meat Sci 2019; 153:117-125. [PMID: 30927683 DOI: 10.1016/j.meatsci.2019.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/03/2019] [Accepted: 03/18/2019] [Indexed: 01/19/2023]
Abstract
The objective of this study was to investigate early postmortem (0.5 h) gene expression in beef Longissimus thoracis (LT) muscles from carcasses with NORMAL (<5.8) and HIGH (>5.9) ultimate pH (pHu). A total of 53 transcripts were differentially expressed (P-value <.05): 40 showed up-regulation and 13 showed down-regulation in HIGH pHu carcasses. Four up-regulated (PDK4, GADD45B, MAOA, METTL21C) genes were confirmed (P < .05) by q-PCR. HIGH pHu samples resulted with lower values in glycolytic potential and AMP-activated protein kinase activity compared to NORMAL at 0.5 and 24 h postmortem (P < .05). Functional pathway analysis showed that calcium transport and GADD45 signaling pathways are associated with the development of HIGH pH meat. Genes involved in stress-related signaling, such as GADD45B, METTL21C and MAOA were overexpressed. These genes are involved in stress signaling that might be affecting Ca2+ transport and oxidative metabolism pathways in HIGH pH muscles.
Collapse
|
10
|
The first comprehensive description of the expression profile of genes involved in differential body growth and the immune system of the Jeju Native Pig and miniature pig. Amino Acids 2018; 51:495-511. [PMID: 30519757 DOI: 10.1007/s00726-018-2685-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022]
Abstract
Sus scrofa provides a major source of animal protein for humans as well as being an excellent biomedical model. This study was carried out to understand, in detail, the genetic and functional variants of Jeju Native Pigs and miniature pigs through differential expression profiling of the genes controlling their immune response, growth performance, and meat quality. The Illumina HiSeq 2000 platform was used for generating 1.3 billion 90 bp paired-end reads, which were mapped to the S. scrofa genome using TopHat2. A total of 2481 and 2768 genes were differentially expressed with 8-log changes in muscle and liver samples, respectively. Five hundred forty-eight genes in muscle and 642 genes in liver samples had BLAST matches within the non-redundant database. GO process and pathway analyses showed enhanced biological processes related to the extracellular structural organization and skeletal muscle cell differentiation in muscle tissue, whereas the liver tissue shares functions related to the inflammatory response. Herein, we identify inflammatory regulatory genes in miniature pigs and growth response genes in Jeju Native Pigs, information which can provide a stronger base for the selection of breeding stock and facilitate further in vitro and in vivo studies for therapeutic purposes.
Collapse
|
11
|
Xu J, Wang C, Jin E, Gu Y, Li S, Li Q. Identification of differentially expressed genes in longissimus dorsi muscle between Wei and Yorkshire pigs using RNA sequencing. Genes Genomics 2017; 40:413-421. [PMID: 29892843 DOI: 10.1007/s13258-017-0643-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Intramuscular fat (IMF) content is an important trait closely related to meat quality, which is highly variable among pig breeds from diverse genetic backgrounds. High-throughput sequencing has become a powerful technique for analyzing the whole transcription profiles of organisms. In order to elucidate the molecular mechanism underlying porcine meat quality, we adopted RNA sequencing to detect transcriptome in the longissimus dorsi muscle of Wei pigs (a Chinese indigenous breed) and Yorkshire pigs (a Western lean-type breed) with different IMF content. For the Wei and Yorkshire pig libraries, over 57 and 64 million clean reads were generated by transcriptome sequencing, respectively. A total of 717 differentially expressed genes (DEGs) were identified in our study (false discovery rate < 0.05 and fold change > 2), with 323 up-regulated and 394 down-regulated genes in Wei pigs compared with Yorkshire pigs. Gene Ontology analysis showed that DEGs significantly related to skeletal muscle cell differentiation, phospholipid catabolic process, and extracellular matrix structural constituent. Pathway analysis revealed that DEGs were involved in fatty acid metabolism, steroid biosynthesis, glycerophospholipid metabolism, and protein digestion and absorption. Quantitative real time PCR confirmed the differential expression of 11 selected DEGs in both pig breeds. The results provide useful information to investigate the transcriptional profiling in skeletal muscle of different pig breeds with divergent phenotypes, and several DEGs can be taken as functional candidate genes related to lipid metabolism (ACSL1, FABP3, UCP3 and PDK4) and skeletal muscle development (ASB2, MSTN, ANKRD1 and ANKRD2).
Collapse
Affiliation(s)
- Jingen Xu
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, Hefei, 230036, Anhui, People's Republic of China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, People's Republic of China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, People's Republic of China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, People's Republic of China.
| | - Qinggang Li
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, People's Republic of China.
| |
Collapse
|
12
|
Longissimus lumborum muscle transcriptome analysis of Laiwu and Yorkshire pigs differing in intramuscular fat content. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0540-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Brunberg EI, Rodenburg TB, Rydhmer L, Kjaer JB, Jensen P, Keeling LJ. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens. Front Vet Sci 2016; 3:57. [PMID: 27500137 PMCID: PMC4956668 DOI: 10.3389/fvets.2016.00057] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/11/2016] [Indexed: 01/15/2023] Open
Abstract
Pigs and poultry are by far the most omnivorous of the domesticated farm animals and it is in their nature to be highly explorative. In the barren production environments, this motivation to explore can be expressed as abnormal oral manipulation directed toward pen mates. Tail biting (TB) in pigs and feather pecking (FP) in laying hens are examples of unwanted behaviors that are detrimental to the welfare of the animals. The aim of this review is to draw these two seemingly similar abnormalities together in a common framework, in order to seek underlying mechanisms and principles. Both TB and FP are affected by the physical and social environment, but not all individuals in a group express these behaviors and individual genetic and neurobiological characteristics play an important role. By synthesizing what is known about environmental and individual influences, we suggest a novel possible mechanism, common for pigs and poultry, involving the brain-gut-microbiota axis.
Collapse
Affiliation(s)
- Emma I. Brunberg
- NORSØK – Norwegian Centre for Organic Agriculture, Tingvoll, Norway
- NIBIO – Norwegian Institute for Bioeconomy Research, Tingvoll, Norway
| | - T. Bas Rodenburg
- Behavioural Ecology Group, Wageningen University, Wageningen, Netherlands
| | - Lotta Rydhmer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Joergen B. Kjaer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Celle, Germany
| | - Per Jensen
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Linda J. Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Li XJ, Zhou J, Liu LQ, Qian K, Wang CL. Identification of genes in longissimus dorsi muscle differentially expressed between Wannanhua and Yorkshire pigs using RNA-sequencing. Anim Genet 2016; 47:324-33. [DOI: 10.1111/age.12421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Affiliation(s)
- X.-J. Li
- Anhui Academy of Agricultural Sciences; Institute of Animal Husbandry and Veterinary Medicine; Hefei 230031 China
- College of Animal Science and Technology; Anhui Agricultural University; Hefei 230036 China
| | - J. Zhou
- College of Animal Science and Technology; Anhui Agricultural University; Hefei 230036 China
| | - L.-Q. Liu
- Anhui Academy of Agricultural Sciences; Institute of Animal Husbandry and Veterinary Medicine; Hefei 230031 China
| | - K. Qian
- Anhui Academy of Agricultural Sciences; Institute of Animal Husbandry and Veterinary Medicine; Hefei 230031 China
| | - C.-L. Wang
- Anhui Academy of Agricultural Sciences; Institute of Animal Husbandry and Veterinary Medicine; Hefei 230031 China
| |
Collapse
|
15
|
Comparative transcriptomic analysis to identify differentially expressed genes in fat tissue of adult Berkshire and Jeju Native Pig using RNA-seq. Mol Biol Rep 2014; 41:6305-15. [PMID: 25008993 DOI: 10.1007/s11033-014-3513-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Pork is a major source of animal protein for humans. The subcutaneous, intermuscular and the intramuscular fat are the factors responsible for meat quality. RNA-seq is rapidly adopted for the profiling of the transcriptomes in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds are of particular interest for the current study. RNA-seq was used to investigate the transcriptome profiling in the fat tissue. Sequence reads were obtained from Ilumina HiSeq2000 and mapped to the pig genome using Tophat2. Total 153 DEGs were identified and 71 among the annotated genes, have BLAST matches in the non- redundant database. Metabolic, immune response and protein binding are enriched pathways in the fat tissue. In our study, biological adhesion, cellular, developmental and multicellular organismal processes in fat were up-regulated in JNP as compare to Berkshire. Multicellular organismal process, developmental process, embryonic morphogenesis and skeletal system development were the most significantly enriched terms in fat of JNP and Berkshire breeds (p = 1.17E-04, 0.044, 3.47E-04 and 4.48E-04 respectively). COL10A1, COL11A2, PDK4 and PNPLA3 genes responsible for skeletal system morphogenesis and body growth were down regulated in JNP. This study is the first statistical analysis for the detection of DEGs from RNA-seq data generated from fat tissue sample. This analysis can be used as stepping stone to understand the difference in the genetic mechanisms that might influence the identification of novel transcripts, sequence polymorphisms, isoforms and noncoding RNAs.
Collapse
|
16
|
Sodhi SS, Song KD, Ghosh M, Sharma N, Lee SJ, Kim JH, Kim N, Mongre RK, Adhikari P, Kim JY, Hong SP, Oh SJ, Jeong DK. Comparative transcriptomic analysis by RNA-seq to discern differential expression of genes in liver and muscle tissues of adult Berkshire and Jeju Native Pig. Gene 2014; 546:233-42. [PMID: 24910116 DOI: 10.1016/j.gene.2014.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Abstract
RNA-seq is being rapidly adopted for the profiling of the transcriptomes in different areas of biology, especially in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds of Sus scrofa, is of particular interest for the current study. For the better understanding of the gene expression profiles of the liver and longissimus dorsi muscle, DEGs were identified via RNA-seq. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the pig reference genome (Sscrofa10.2) using Tophat2. We identified 169 and 39 DEGs in the liver and muscle of JNP respectively, by comparison with Berkshire breed. Out of all identified genes, 41 genes in the liver and 9 genes in the muscle have given significant expression. Gene ontology (GO) terms of developmental process and KEGG pathway analysis showed that metabolic, immune response and protein binding were commonly enriched pathways in the two tissues. Further the heat map analysis by ArrayStar has shown the different levels of expression in JNP with respect to the Berkshire breed. The validation through real time PCR and western blotting also confirmed the differential expression of genes in both breeds. Genes pertaining to metabolic process and inflammatory and immune system are more enriched in Berkshire breed. This comparative transcriptome analysis of two tissues suggests a subset of novel marker genes which expressed differently between the JNP and Berkshire.
Collapse
Affiliation(s)
- Simrinder Singh Sodhi
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Ki-Duk Song
- The Animal Genomics and Breeding Center, Hankyong National University, Anseong-si, Gyeonggi-do 456-749, South Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Neelesh Sharma
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jeong Hyun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Nameun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Raj Kumar Mongre
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Pradeep Adhikari
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Jin Young Kim
- Institute for Livestock Promotion, Jeju-do, Jeju 690-802, South Korea
| | - Sang Pyo Hong
- Institute for Livestock Promotion, Jeju-do, Jeju 690-802, South Korea
| | - Sung Jong Oh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 690-756, South Korea; Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 690-756, South Korea.
| |
Collapse
|
17
|
Brunberg E, Jensen P, Isaksson A, Keeling LJ. Behavioural and Brain Gene Expression Profiling in Pigs during Tail Biting Outbreaks - Evidence of a Tail Biting Resistant Phenotype. PLoS One 2013; 8:e66513. [PMID: 23824700 PMCID: PMC3688911 DOI: 10.1371/journal.pone.0066513] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 05/10/2013] [Indexed: 11/19/2022] Open
Abstract
Abnormal tail biting behaviour is a major welfare problem for pigs receiving the behaviour, as well as an indication of decreased welfare in the pigs performing it. However, not all pigs in a pen perform or receive tail biting behaviour and it has recently been shown that these 'neutral' pigs not only differ in their behaviour, but also in their gene expression compared to performers and receivers of tail biting in the same pen. To investigate whether this difference was linked to the cause or a consequence of them not being involved in the outbreak of tail biting, behaviour and brain gene expression was compared with 'control' pigs housed in pens with no tail biting. It was shown that the pigs housed in control pens performed a wider variety of pig-directed abnormal behaviour (belly nosing 0.95±1.59, tail in mouth 0.31±0.60 and 'other' abnormal 1.53±4.26; mean±S.D) compared to the neutral pigs (belly nosing 0.30±0.62, tail in mouth 0.13±0.50 and "other" abnormal 0.42±1.06). With Affymetrix gene expression arrays, 107 transcripts were identified as differently expressed (p<0.05) between these two categories of pigs. Several of these transcripts had already been shown to be differently expressed in the neutral pigs when they were compared to performers and receivers of tail biting in the same pen in an earlier study. Hence, the different expression of these genes cannot be a consequence of the neutral pigs not being involved in tail biting behaviour, but rather linked to the cause contributing to why they were not involved in tail biting interactions. These neutral pigs seem to have a genetic and behavioural profile that somehow contributes to them being resistant to performing or receiving pig-directed abnormal behaviour, such as tail biting, even when housed in an environment that elicits that behaviour in other pigs.
Collapse
Affiliation(s)
- Emma Brunberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Per Jensen
- IFM Biology, Linköping University, Linköping, Sweden
| | - Anders Isaksson
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Linda J. Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
18
|
Malila Y, Tempelman R, Sporer K, Ernst C, Velleman S, Reed K, Strasburg G. Differential gene expression between normal and pale, soft, and exudative turkey meat. Poult Sci 2013; 92:1621-33. [DOI: 10.3382/ps.2012-02778] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Brunberg E, Jensen P, Isaksson A, Keeling LJ. Brain gene expression differences are associated with abnormal tail biting behavior in pigs. GENES BRAIN AND BEHAVIOR 2012; 12:275-81. [PMID: 23146156 DOI: 10.1111/gbb.12002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/28/2012] [Accepted: 11/05/2012] [Indexed: 12/25/2022]
Abstract
Knowledge about gene expression in animals involved in abnormal behaviors can contribute to the understanding of underlying biological mechanisms. This study aimed to explore the motivational background to tail biting, an abnormal injurious behavior and severe welfare problem in pig production. Affymetrix microarrays were used to investigate gene expression differences in the hypothalamus and prefrontal cortex of pigs performing tail biting, pigs receiving bites to the tail and neutral pigs who were not involved in the behavior. In the hypothalamus, 32 transcripts were differentially expressed (P < 0.05) when tail biters were compared with neutral pigs, 130 when comparing receiver pigs with neutrals, and two when tail biters were compared with receivers. In the prefrontal cortex, seven transcripts were differently expressed in tail biters when compared with neutrals, seven in receivers vs. neutrals and none in the tail biters vs. receivers. In total, 19 genes showed a different expression pattern in neutral pigs when compared with both performers and receivers. This implies that the functions of these may provide knowledge about why the neutral pigs are not involved in tail biting behavior as performers or receivers. Among these 19 transcripts were genes associated with production traits in pigs (PDK4), sociality in humans and mice (GTF2I) and novelty seeking in humans (EGF). These are in line with hypotheses linking tail biting with reduced back fat thickness and explorative behavior.
Collapse
Affiliation(s)
- E Brunberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
20
|
Xu Y, Qian H, Feng X, Xiong Y, Lei M, Ren Z, Zuo B, Xu D, Ma Y, Yuan H. Differential proteome and transcriptome analysis of porcine skeletal muscle during development. J Proteomics 2012; 75:2093-108. [DOI: 10.1016/j.jprot.2012.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 01/04/2012] [Accepted: 01/08/2012] [Indexed: 11/26/2022]
|
21
|
Ren H, Li L, Su H, Xu L, Wei C, Zhang L, Li H, Liu W, Du L. Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep. BMC Genomics 2011; 12:411. [PMID: 21838923 PMCID: PMC3173453 DOI: 10.1186/1471-2164-12-411] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 08/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whether myofibers increase with a pulsed-wave mode at particular developmental stages or whether they augment evenly across developmental stages in large mammals is unclear. Additionally, the molecular mechanisms of myostatin in myofiber hyperplasia at the fetal stage in sheep remain unknown. Using the first specialized transcriptome-wide sheep oligo DNA microarray and histological methods, we investigated the gene expression profile and histological characteristics of developing fetal ovine longissimus muscle in Texel sheep (high muscle and low fat), as a myostatin model of natural mutation, and Ujumqin sheep (low muscle and high fat). Fetal skeletal muscles were sampled at 70, 85, 100, 120, and 135 d of gestation. RESULTS Myofiber number increased sharply with a pulsed-wave mode at certain developmental stages but was not augmented evenly across developmental stages in fetal sheep. The surges in myofiber hyperplasia occurred at 85 and 120 d in Texel sheep, whereas a unique proliferative surge appeared at 100 d in Ujumqin sheep. Analysis of the microarray demonstrated that immune and hematological systems' development and function, lipid metabolism, and cell communication were the biological functions that were most differentially expressed between Texel and Ujumqin sheep during muscle development. Pathways associated with myogenesis and the proliferation of myoblasts, such as calcium signaling, chemokine (C-X-C motif) receptor 4 signaling, and vascular endothelial growth factor signaling, were affected significantly at specific fetal stages, which underpinned fetal myofiber hyperplasia and postnatal muscle hypertrophy. Moreover, we identified some differentially expressed genes between the two breeds that could be potential myostatin targets for further investigation. CONCLUSIONS Proliferation of myofibers proceeded in a pulsed-wave mode at particular fetal stages in the sheep. The myostatin mutation changed the gene expression pattern in skeletal muscle at a transcriptome-wide level, resulting in variation in myofiber phenotype between Texel and Ujumqin sheep during the second half of gestation. Our findings provide a novel and dynamic description of the effect of myostatin on skeletal muscle development, which contributes to understanding the biology of muscle development in large mammals.
Collapse
Affiliation(s)
- Hangxing Ren
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Qiao M, Wu HY, Guo L, Mei SQ, Zhang PP, Li FE, Zheng R, Deng CY. Imprinting analysis of porcine DIO3 gene in two fetal stages and association analysis with carcass and meat quality traits. Mol Biol Rep 2011; 39:2329-35. [PMID: 21660470 DOI: 10.1007/s11033-011-0983-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/27/2011] [Indexed: 01/10/2023]
Abstract
Imprinted genes play important roles in mammalian growth, development and behavior. In this study, we obtained 1568 bp mRNA sequence of porcine DIO3 (deiodinase, iodothyronine, type III), and also identified its imprinting status during porcine fetal development. The complete open reading frame (ORF) encoding 278 amino acids. The porcine DIO3 mRNA was expressed predominantly in backfat, mildly in liver, uterus, kidney, heart, small intestine, muscle and stomach, and almost absent in spleen and lung. A single nucleotide polymorphism in exon (A/C (687)) was used to investigate the allele frequencies in different pig breeds and the imprinting status in porcine embryonic tissues. The results indicate that DIO3 was imprinted in all the tested tissues. Statistical analysis showed the DIO3 gene polymorphism was significantly associated with almost all the fat deposition and carcass traits, including lean meat percentage (LMP), fat meat percentage (FMP), ratio of lean to fat (RLF), shoulder fat thickness (SFT), sixth-seventh rib fat thickness (RFT), buttock fat thickness (BFT), loin eye area (LEA), and intramuscular fat (IMF).
Collapse
Affiliation(s)
- Mu Qiao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Li C, Chen X, Zhang Y, Ye H, Liu T. Molecular and expression characterization of growth hormone/prolactin family genes in the Prenant’s schizothoracin. Mol Biol Rep 2011; 38:4595-602. [DOI: 10.1007/s11033-010-0592-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/20/2010] [Indexed: 01/31/2023]
|
24
|
Developmental expression changes of the genes involved in IGFI signaling pathway in longissimus dorsi muscle of Tongcheng and Yorkshire pigs during postnatal growth. Mol Biol Rep 2011; 38:5133-8. [PMID: 21246287 DOI: 10.1007/s11033-010-0662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
IGFI signaling pathway is sufficient to regulate myofibre hypertrophy postnatally, which is associated with muscle mass in economically livestock. In the present study, we drafted the developmental expression pattern of eight genes implicated in IGFI system across six stages of postnatal myofibre growth in Yorkshire and Tongcheng pigs. The results indicated that GRB2 may contribute to increased DNA content in postnatal myofibre hypertrophy via GRB2-Ras-Raf-MEK-ERK sub-pathway; INSR, PDK1, IRS1 and eIF4E may contribute to high growth rate via stimulating the rate of protein synthesis and inhibiting the rate of protein degradation. In addition, the results suggested 60 days maybe a very important stage in postnatal myofibre growth. Moreover, higher mRNA level of IRS1 and GLUT4 maybe associated with inferior meat quality in Yorkshire compared to Tongcheng pig. Therefore, IGFI signaling pathway regulates myofibre hypertrophy postnatally via complicated signal effectors, which may have negative impact on meat quality simultaneously.
Collapse
|
25
|
Mo XY, Lan J, Jiao QZ, Xiong YZ, Zuo B, Li FE, Xu DQ, Lei MG. Molecular characterization, expression pattern and association analysis of the porcine BTG2 gene. Mol Biol Rep 2010; 38:4389-96. [PMID: 21116848 DOI: 10.1007/s11033-010-0566-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
B-cell translocation gene 2 (BTG2), a member of the B-cell translocation gene family with anti-proliferative properties, have been characterized to be involved in cell growth, differentiation and survival. In this study, we cloned the full length sequences of cDNA and genomic DNA of BTG2 gene from the porcine skeletal muscle. Spatial expression analysis showed that the porcine BTG2 gene is expressed predominantly in muscle. Temporal expression analysis in longissimus dorsi muscle demonstrated that the expression of BTG2 gene has the highest expression at 60 days old in Large White while with a peak expression at 120 days old in Meishan. Temporal analysis also revealed that the expression of BTG2 gene is generally higher in Large White than in Meishan at all the developmental stages tested (65 days of conception and 3, 35, 60, 120, and 180 days of postnatal). A single nucleotide polymorphism (G417C) in the intron of BTG2 gene was then detected by PCR-RFLP in Large White × Meishan F2 resource population and association analysis suggested that this polymorphic site had significant association (P < 0.05) with the buttock fat thickness, fat percentage, lean muscle percentage, ratio of lean to fat and carcass length.
Collapse
Affiliation(s)
- X Y Mo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol Biol Rep 2010; 38:2161-6. [DOI: 10.1007/s11033-010-0344-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 09/04/2010] [Indexed: 12/15/2022]
|
27
|
Switonski M, Stachowiak M, Cieslak J, Bartz M, Grzes M. Genetics of fat tissue accumulation in pigs: a comparative approach. J Appl Genet 2010; 51:153-68. [DOI: 10.1007/bf03195724] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Yang H, Xu ZY, Lei MG, Li FE, Deng CY, Xiong YZ, Zuo B. Real-time reverse transcription-PCR expression profiling of porcine troponin I family in three different types of muscles during development. Mol Biol Rep 2010; 38:827-32. [PMID: 20376701 DOI: 10.1007/s11033-010-0172-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/31/2010] [Indexed: 11/27/2022]
Abstract
In this study, the expression profiling of three troponin I isoforms (TNNI1, TNNI2 and TNNI3) was investigated in two pig breeds differing in muscularity (Yorkshire and Meishan) at six stages (fetal 60 days and postnatal 3, 35, 60, 120, and 180 days) and three types of muscles (longissimus dorsi muscle, LD; semitendinosus, ST; cardiac muscle, CM) using relative real-time quantitative PCR. Significant differences of troponin I expression in three muscles were found between Yorkshire and Meishan breeds at some stages. The expression peak of TNNI1 and TNNI2 in LD and ST was at postnatal 35 or 60 days in Yorkshire and at postnatal 120 or 180 days in Meishan pigs, while it occurred in CM at postnatal 3 days in two pig breeds. The relative expression values of TNNI1 and TNNI2 were significantly higher in LD than ST at most of stages after birth. The expression ratio of TNNI2 versus TNNI1 favoured TNNI2 expression in ST and LD, but on the contrary in CM. The expression peak of TNNI3 occurred at postnatal 60 and 120 days in Yorkshire and Meishan pigs, respectively. TNNI1 and TNNI3 were co-expressed in CM during the fetal and earlier stages after birth.
Collapse
Affiliation(s)
- H Yang
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Xiong Q, Chai J, Zhang PP, Wu J, Jiang SW, Zheng R, Deng CY. MyoD control of SKIP expression during pig skeletal muscle development. Mol Biol Rep 2010; 38:267-74. [PMID: 20336382 DOI: 10.1007/s11033-010-0104-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/16/2010] [Indexed: 11/25/2022]
Abstract
Skeletal muscle and kidney enriched inositol phosphatase (SKIP) was identified as a 5'-inositol phosphatase that hydrolyzes PI(3,4,5)P3 to PI(3,4)P2 that negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling in skeletal muscle. In this study, we obtained a 1575-bp mRNA sequence of porcine SKIP that included the full coding region encoding a protein of 450 amino acids. With the use of comparative mapping, we mapped this gene to SSC12 q1.3, where many QTLs affect Backfat thickness at 10th rib, carcass yield, the number of muscle fibers, and ham weight traits. As a candidate gene for growth and carcass traits, a novel single nucleotide polymorphism in exon 12 (G>A) was detected by PCR-RFLP. The results showed that the GG genotype had higher skin percentage (SP), carcass length to first spondyle (CL1), carcass length to first rib (CL2), but lower intramuscular fat (IMF) as compared with genotype AG (P<0.05), and allele G seemed to be associated with an increase in the growth trait. Porcine SKIP was expressed abundantly in skeletal muscle tissue and was transcriptionally upregulated during skeletal muscle differentiation. Analysis of the porcine SKIP promoter sequence demonstrated that MyoD was involved in regulating SKIP mRNA expression in myotubes, partly via the cis-acting elements in SKIP promoter. In summary, we suggested that SKIP might play a role in the regulation of skeletal muscle development in pigs.
Collapse
Affiliation(s)
- Q Xiong
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Mol Biol Rep 2010; 37:3931-9. [PMID: 20300864 DOI: 10.1007/s11033-010-0050-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 03/05/2010] [Indexed: 01/28/2023]
Abstract
Porcine chromosome 6 (SSC6) has been reported to have QTL affecting intramuscular fat content (IMF) in multiple populations. The objective of this study was to investigate the effect of FABP3 and LEPR genetic variations as well as their mRNA expression on the IMF trait in a three-generation of Korean native pig and Yorkshire crossed animals. Several polymorphisms of the FABP3 (HinfI, HaeIII and HinfI*) were significantly associated with moisture, tenderness and flavor score (P < 0.05), and were used to construct haplotypes: haplotype 1 (-TCT-) increased the marbling and intramuscular fat content, however, haplotype 2 (-CCT-) decreased tenderness. The LEPR AvaII polymorphism showed significant association with moisture, intramuscular fat, cholesterol and flavor score (P < 0.05). The linkage analyses with six microsatellites mapped FABP3 gene in the interval between the markers Sw1129 and S0228 (Sw1129--11.7 cM--FABP3-9.1 cM--S0228), and the LEPR gene between the markers S0121 and Sw322 (S0121--7.5 cM--LEPR--28.5 cM--Sw322). QTL mapping suggested a significant QTL affecting Moisture (83 cM) and IMF (84 cM) located close to marker S0228. The gene expression results showed that in the loin muscle, both of the FABP3 and LEPR genes showed significantly higher expression in pigs with higher IMF%, however, in the backfat, only FABP3 showed differential expression between these two groups of pigs (significantly higher expression in pigs with lower IMF%) (P < 0.05). In the liver, both of these two genes did not show any difference between the high and low IMF% groups.
Collapse
|
31
|
Chai J, Xiong Q, Zhang PP, Shang YY, Zheng R, Peng J, Jiang SW. Evidence for a new allele at the SERCA1 locus affecting pork meat quality in part through the imbalance of Ca2+ homeostasis. Mol Biol Rep 2010; 37:613-9. [PMID: 19821152 DOI: 10.1007/s11033-009-9872-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/29/2009] [Indexed: 11/25/2022]
Abstract
Sarcoendoplasmic reticulum Ca2+-ATPase 1 (SERCA1) as a Ca2+ release channel plays a key role in the relaxation of skeletal muscle through pumping cytosolic Ca2+ into the SR (sarcoplasmic reticulum). In this study, a novel single nucleotide polymorphism (SNP) in exon 8 (C > T) was detected by tetra-primer ARMS-PCR and the tissue expression pattern of SERCA1 was analyzed in eleven tissues. A model of primary skeletal muscle cells in vitro exposed to dexamethasone (DEX, a synthetic corticosteroid) was also employed to determine whether stress hormones cause an increase in intracellular Ca2+ concentration that is associated with alteration in SERCA1 and in turn subsequently affect meat quality. The results showed that the CC genotype has lower content intramuscular fat and higher water than pig carrying the genotype CT and CC. In addition, the additive effects were both significantly (P < 0.05) and allele T seemed to be associate with increase in intramuscular fat, while decrease in water content. Accompanied with previous studies, the high abundance of porcine SERCA1 was found in skeletal muscle tissue. DEX markedly down-regulated the expression of SERCA1, leading to Ca2+ overload. Furthermore, the imbalance of Ca2+ homeostasis up-regulated the transcription level of Calpain1. Taken together, we demonstrated a novel mechanism that the changes in expression of SERCA1 potential disturb the normal Ca2+ channel as well as the balance of Ca2+ homeostasis and which in turn finally activated Ca2+-dependent proteases such as Calpain1 which could affect meat quality.
Collapse
Affiliation(s)
- J Chai
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics and Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Maak S, Boettcher D, Tetens J, Wensch-Dorendorf M, Nürnberg G, Wimmers K, Swalve HH, Thaller G. Identification of candidate genes for congenital splay leg in piglets by alternative analysis of DNA microarray data. Int J Biol Sci 2009; 5:331-7. [PMID: 19421343 PMCID: PMC2677734 DOI: 10.7150/ijbs.5.331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/30/2009] [Indexed: 11/05/2022] Open
Abstract
The congenital splay leg syndrome in piglets is characterized by a temporarily impaired functionality of the hind leg muscles immediately after birth. Etiology and pathogenetic mechanisms for the disease are still not well understood. We compared genome wide gene expression of three hind leg muscles (M. adductores, M. gracilis and M. sartorius) between affected piglets and their healthy littermates with the GeneChip Porcine Genome Array (Affymetrix) in order to identify candidate genes for the disease. Data analysis with standard algorithms revealed no significant differences between both groups. By application of an alternative approach, we identified 63 transcripts with differences in two muscles and 5 genes differing between the groups in three muscles. The expression of six selected genes (SQSTM1, SSRP1, DDIT4, ENAH, MAF, and PDK4) was investigated with SYBRGreen RT-Real time PCR. The differences obtained with the microarray analysis could be confirmed and demonstrate the validity of the alternative approach to microarray data analysis. Four genes with different expression levels in at least two muscles (SQSTM1, SSRP1, DDIT4, and MAF) are assigned to transcriptional cascades related to cell death and may thus indicate pathways for further investigations on congenital splay leg in piglets.
Collapse
Affiliation(s)
- Steffen Maak
- Research Institute for the Biology of Farm Animals (FBN) Dummerstorf, D-18196 Dummerstorf, Germany. maak@fbn-dummerstorf
| | | | | | | | | | | | | | | |
Collapse
|