1
|
Wang L, Yang C, Chu M, Wang ZW, Xue B. Cdc20 induces the radioresistance of bladder cancer cells by targeting FoxO1 degradation. Cancer Lett 2020; 500:172-181. [PMID: 33290869 DOI: 10.1016/j.canlet.2020.11.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
Ionizing radiation is a conventional therapy for cancer patients, but patients often experience distant metastasis and recurrence, which lead to a poor prognosis after the implementation of this treatment. Moreover, the underlying mechanisms by which radioresistance contributes to metastatic potential is still elusive. Here, we explored the molecular mechanisms that contribute to radioresistance in bladder cancer. To achieve this, we established two irradiation-resistant (IR) cell lines, T24R and 5637R, which were derived from parental bladder cancer cell lines. Cell viability was detected by CCK-8 assay, while migration and invasion abilities were examined by wound healing and Transwell chamber assays, respectively. Furthermore, the role of Cdc20 in the regulation of epithelial to mesenchymal transition (EMT) in IR cells was explored by Western blotting, immunoprecipitation and immunofluorescence staining. The IR cells exhibited EMT properties, and our data showed that Cdc20 expression was significantly elevated in IR cells. Remarkably, Cdc20 silencing reversed the EMT phenotype in IR cells. Mechanistically, Cdc20 governed IR-mediated EMT in part by governing forkhead box O1 (FoxO1) degradation. Taken together, our findings showed that the inactivation of Cdc20 or the activation of FoxO1 might be a potential strategy to overcome radioresistance in bladder cancer.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Chuanlai Yang
- Scientific Research Department, The Second Affiliated Hospital of Soochow University, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Obstetrics and gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
2
|
Gheghiani L, Shang S, Fu Z. Targeting the PLK1-FOXO1 pathway as a novel therapeutic approach for treating advanced prostate cancer. Sci Rep 2020; 10:12327. [PMID: 32704044 PMCID: PMC7378169 DOI: 10.1038/s41598-020-69338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/10/2020] [Indexed: 02/04/2023] Open
Abstract
The forkhead box protein O1 (FOXO1) is considered to be a key tumor suppressor due to its involvement in a broad range of cancer-related functions, including cellular differentiation, apoptosis, cell cycle arrest, and DNA damage. Given that inactivation of FOXO1 has been reported in many types of human cancer, we sought to investigate whether restoration of the pro-apoptotic activity of FOXO1 may be used as a new promising strategy for cancer treatment. Our previous study revealed that Polo-like kinase 1 (PLK1), a serine/threonine kinase that is essential for cell cycle progression, is a novel and major regulator of FOXO1 in the late phases of the cell cycle. Here, we provided evidence that PLK1-dependent phosphorylation of FOXO1 induces its nuclear exclusion and negatively regulates FOXO1's transcriptional activity in prostate cancer (PCa). Blocking the PLK1-dependant phosphorylation of FOXO1 restored the pro-apoptotic function of FOXO1 in PCa. Combining PLK1 inhibition with nocodazole (to induce mitotic arrest) had synergistic antitumor effects in vitro, with minimal effect on normal prostate epithelial cells. These findings shed light on a novel approach to reactivate apoptotic pathways in advanced PCa and support targeting PLK1-FOXO1 pathways as a novel approach for treating advanced PCa.
Collapse
Affiliation(s)
- Lilia Gheghiani
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Shengzhe Shang
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
3
|
Jiang S, Li T, Yang Z, Hu W, Yang Y. Deciphering the roles of FOXO1 in human neoplasms. Int J Cancer 2018; 143:1560-1568. [PMID: 29473160 DOI: 10.1002/ijc.31338] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
Abstract
Neoplasms constituted an enormous burden and contributed to an estimated 8.2 million deaths in 2012 worldwide. FOXO1 (forkhead box O1), a member of the forkhead box (FOX) family, is a transcriptional factor involved in diverse cellular functions. Herein, we concentrate on recent studies of the antineoplastic roles of FOXO1 in neoplasms. This article may serve as a guide for future research and identify FOXO1 as a potent therapeutic target in neoplasms.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| |
Collapse
|
4
|
van Doeselaar S, Burgering BMT. FOXOs Maintaining the Equilibrium for Better or for Worse. Curr Top Dev Biol 2018; 127:49-103. [PMID: 29433740 DOI: 10.1016/bs.ctdb.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paradigm shift is emerging within the FOXO field and accumulating evidence indicates that we need to reappreciate the role of FOXOs, at least in cancer development. Here, we discuss the possibility that FOXOs are both tumor suppressors as well as promoters of tumor progression. This is mostly dependent on the biological context. Critical to this dichotomous role is the notion that FOXOs are central in preserving cellular homeostasis in redox control, genomic stability, and protein turnover. From this perspective, a paradoxical role in both suppressing and enhancing tumor progression can be reconciled. As many small molecules targeting the PI3K pathway are developed by big pharmaceutical companies and/or are in clinical trial, we will discuss what the consequences may be for the context-dependent role of FOXOs in tumor development in treatment options based on active PI3K signaling in tumors.
Collapse
Affiliation(s)
- Sabina van Doeselaar
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Sen S, Kawahara B, Fry NL, Farias-Eisner R, Zhang D, Mascharak PK, Chaudhuri G. A light-activated NO donor attenuates anchorage independent growth of cancer cells: Important role of a cross talk between NO and other reactive oxygen species. Arch Biochem Biophys 2013; 540:33-40. [PMID: 24157690 DOI: 10.1016/j.abb.2013.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022]
Abstract
It is established that high concentrations of nitric oxide(1) (NO), as released from activated macrophages, induce apoptosis in breast cancer cells. In this study, we assessed the potential of a light-activated NO donor [(Me2bpb)Ru(NO)(Resf)], a recently reported apoptototic agent, in suppressing the anchorage independent growth potentials of an aggressive human breast cancer cell line. Our results demonstrated the down regulation of anchorage independent growth by light activated NO treatment in the aggressive human breast cancer cell line MDA-MB-231 and afforded insight into the associated mechanism(s). The investigation revealed an up-regulation of the bioactivity of catalase with an accompanied reduction in the endogenous levels of H2O2, a direct substrate of catalase and a recently identified endogenous growth modulator in breast cancer cells. An earlier publication reported that endogenous superoxide (O2(-)) in human breast cancer cells constitutively inhibits catalase bioactivity (at the level of its protein), resulting in increased H2O2 levels. Interestingly in this study, O2(-) was also found to be down- regulated following NO treatment providing a basis for the observed increase in catalase bioactivity. Cells silenced for the catalase gene exhibited compromised reduction in anchorage independent growth upon light activated NO treatment. Collectively this study detailed a mechanistic cross talk between exogenous NO and endogenous ROS in attenuating anchorage independent growth.
Collapse
Affiliation(s)
- Suvajit Sen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Akter R, Hossain MZ, Kleve MG, Gealt MA. Wortmannin induces MCF-7 breast cancer cell death via the apoptotic pathway, involving chromatin condensation, generation of reactive oxygen species, and membrane blebbing. BREAST CANCER-TARGETS AND THERAPY 2012; 4:103-13. [PMID: 24367198 DOI: 10.2147/bctt.s31712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Apoptosis can be used as a reliable marker for evaluating potential chemotherapeutic agents. Because wortmannin is a microbial steroidal metabolite, it specifically inhibits the phosphatidyl inositol 3-kinase pathway, and could be used as a promising apoptosis-based therapeutic agent in the treatment of cancer. The objective of this study was to investigate the biomolecular mechanisms involved in wortmannin-induced cell death of breast cancer-derived MCF-7 cells. METHODS AND RESULTS Our experimental results demonstrate that wortmannin has strong apoptotic effects through a combination of different actions, including reduction of cell viability in a dose-dependent manner, inhibition of proliferation, and enhanced generation of intracellular reactive oxygen species. CONCLUSION Our findings suggest that wortmannin induces MCF-7 cell death via a programmed pathway showing chromatin condensation, nuclear fragmentation, reactive oxygen species, and membrane blebbing, which are characteristics typical of apoptosis.
Collapse
Affiliation(s)
- Rozina Akter
- Applied Biosciences Emphasis, Department of Applied Science, University Arkansas at Little Rock, Little Rock, AR, USA
| | - Md Zakir Hossain
- Graduate Institute of Technology, University Arkansas at Little Rock, Little Rock, AR, USA
| | - Maurice G Kleve
- Department of Biology, College of Science and of Mathematics, University Arkansas at Little Rock, Little Rock, AR, USA
| | - Michael A Gealt
- Department of Biology, College of Science and of Mathematics, University Arkansas at Little Rock, Little Rock, AR, USA
| |
Collapse
|
7
|
DLC-1 as a modulator of proliferation, apoptosis and migration in Burkitt's lymphoma cells. Mol Biol Rep 2010; 38:1915-20. [PMID: 20882354 DOI: 10.1007/s11033-010-0311-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 09/03/2010] [Indexed: 01/22/2023]
Abstract
Deleted in liver cancer-1(DLC-1) gene expression is frequently down-regulated or deleted in many types of human cancer. To evaluate whether DLC-1 could be a therapeutic target for non-Hodgkin lymphoma (NHL), we examined the expressions of DLC-1 in Burkitt's lymphoma (BL) cell lines and tested the effects of DLC-1 on cellular growth and migration in BL cells. DLC-1 expression was not detectable in two human BL cell lines, Raji and Daudi, by reverse transcription-PCR. The transfer of DLC-1 into Raji and Daudi cell lines caused a significant inhibition in cell proliferation. This inhibitory effect on cell proliferation in BL cell lines was accompanied by induction of apoptosis. Furthermore, restoration of DLC-1 expression in BL cells had a significant inhibitory effect on migration. Our findings suggest that DLC-1 may play an important role in lymphoma by acting as a bona fide new tumor suppressor gene.
Collapse
|